Panasonic

PROGRAMMABLE CONTROLLER FP0 User's Manual

ARCT1F389E-5

Safety Precautions

Observe the following notices to ensure personal safety or to prevent accidents. To ensure that you use this product correctly, read this User's Manual thoroughly before use. Make sure that you fully understand the product and information on safety. This manual uses two safety flags to indicate different levels of danger.

WARNING

If critical situations that could lead to user's death or serious injury is assumed by mishandling of the product.

- -Always take precautions to ensure the overall safety of your system, so that the whole system remains safe in the event of failure of this product or other external factor.
- -Do not use this product in areas with inflammable gas. It could lead to an explosion.
- -Exposing this product to excessive heat or open flames could cause damage to the lithium battery or other electronic parts.
- -Battery may explode if mistreated. Do not recharge, disassemble or dispose of fire.

CAUTION

If critical situations that could lead to user's injury or only property damage is assumed by mishandling of the product.

- To prevent excessive exothermic heat or smoke generation, use this product at the values less than the maximum of the characteristics and performance that are assured in these specifications.
 Do not dismantle or remodel the product. It could cause excessive exothermic heat or smoke generation.
- -Do not touch the terminal while turning on electricity. It could lead to an electric shock.
- -Use the external devices to function the emergency stop and interlock circuit.
- -Connect the wires or connectors securely.
- The loose connection could cause excessive exothermic heat or smoke generation.
- -Do not allow foreign matters such as liquid, flammable materials, metals to go into the inside of the product. It could cause excessive exothermic heat or smoke generation.
- -Do not undertake construction (such as connection and disconnection) while the power supply is on. It could lead to an electric shock.

Copyright / Trademarks

- -This manual and its contents are copyrighted.
- -You may not copy this manual,in whole or part,without written consent of Panasonic Electric Works.,Ltd.
- -Windows and Windows NT are registered trademarks of Microsoft Corporation in the United States and/or other countries.
- -All other company names and product names are trademarks or registered trademarks of their respective owners.
- -Matsushita Electric Works,Ltd. pursues a policy of continuous improvement of the Design and performance of its products, therefore,we reserve the right to change the manual/ product without notice.

Introduction

FP0

This manual explains hardware configurations, installation, wiring procedures, I/O allocations and maintenance.

Operating environment

(Use the unit within the range of the general specifications when installing)

- Ambient temperatures:0 to +55°C
- Ambient humidity: 30% to 85% RH (at 25°C, non-condensing)
- For use in pollution Degree 2 environment.
- Do not use it in the following environments.
 - Direct sunlight
 - Sudden temperature changes causing condensation.
 - Inflammable or corrosive gas.
 - E-xcessive airborne dust, metal particles or saline matter.
 - Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as mmonia or caustic soda.
 - Direct vibration, shock or direct drop of water.
 - Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters, or any other equipment that would generate high switching surges. (Min.100mm or less)

Static electricity

- Before touching the unit, always touch a grounded piece of metal in order to discharge static electricity.
- In dry locations, excessive static electricity can cause problems.

Wiring the Power Supply to the Control Unit

- Use a power supply wire that is thicker than 2 mm2 (AWG14), and twist it.
- The unit has sufficient noise immunity against the noise generated on the power line. However, it is recommended to take measures for reducing noise such as using a isolating transformer before supplying the power.
- Allocate an independent wiring for each power supplying line, input/output device and operating device.
- If using a power supply without a protective circuit, power should be supplied through a protective element such as a fuse.
- Be sure to supply power to a control and an expansion units from a single power supply. Turning on/off of the power of all the units must be conducted simultaneously.

Power supply sequence

• In order to protect the power supply sequence, make sure to turn off the control unit before the input/output power supply. If the input/output power supply is turned off before the control unit, or if the control unit is not shut off momentarily, the controller detects change of input level, and might conduct an unexpected operation.

Before turning ON the power

When turning ON the power for the first time, be sure to take the precautions given below.

- When carrying out construction, check to make sure that there are no scraps of wiring, particularly conductive fragments, adhering to the unit.
- Verify that the power supply wiring, I/O wiring, and power supply voltage are all correct.
- Sufficiently tighten the installation screws and terminal screws.
- Set the mode switch to PROG. mode.

Manuals To Be Used

The required manuals differ according to the units to be used. See the table below.

A: Available N/A: Not available

Unit type	User's manual No.ARCT1F389E	Programming manual No.ARCT1F313E	Manual No.
FP0 Control unit	А	А	N/A
FP0 Expansion unit	A	А	N/A
FP0 Thermocouple unit	A	A	ARCT1F366E
FP0 Analog I/O unit	A	А	ARCT1F390E
FP0 A/D conversion unit	A	A	ARCT1F321E
FP0 D/A conversion unit	A	А	ARCT1F382E
FP0 CC-Link slave unit	A	А	ARCT1F380E
FP0 I/O link unit	А	А	N/A
FP0 Power supply unit	A	А	N/A
FP0 RTD unit	А	А	ARCT1F445E

- A suffix "-1" is added to the end of manual numbers when the manuals have been revised. The final number increases for every revision.

- <FPWIN GR Technical Guide Book ARCT1F332E> is supplied with the standard ladder tool software FPWIN GR.

- <FPWIN Pro Technical Guide Book ARCT1F405E> is supplied with the programming tool software FPWIN Pro.

Key Point: The PDF versions are provided at our website.

(User registration is required. Free of charge)

FP0

Table of Contents

Chapter 1 Overview

1.1	Compo	nents
	1.1.1	FP0 Control Units 1 – 3
	1.1.2	FP0 Expansion Units 1 – 4
	1.1.3	Intelligent Units 1 – 5
	1.1.4	Link Units
	1.1.5	Power Supply Unit 1 – 5
	1.1.6	Options and Additional Parts 1 - 6
1.2	Expans	sion Possibilities 1 – 7
1.3	Combi	nation Possibilities
	1.3.1	Relay Output Type Units 1 – 8
	1.3.2	Transistor Output Type Units 1 – 9
1.4	Progra	mming Tools
	1.4.1	Discontinued Products of Programming Tool

Chapter 2 Control Units

2.1	Parts ar	nd Terminolo	ogy	2 – 3
	2.1.1	Control Un	it Types	2 – 4
		2.1.1.1	Status Indicator LEDs	2 – 6
		2.1.1.2	Mode Switch	. 2 – 6
		2.1.1.3	Tool Port	. 2 – 6
2.2	Specific	ations		2 – 7
	2.2.1	General Sp	pecifications	2 – 7
		2.2.1.1	Weight	2 – 7
		2.2.1.2	Current Consumed by the Control Unit	. 2 – 8
	2.2.2	Performan	ce Specifications	2 – 10
	2.2.3	Input Spec	ifications	2 – 14
		2.2.3.1	Limitations on Number of Simultaneous Input ON Points	2 – 15
	2.2.4	Output Spe	ecifications	2 – 16
		2.2.4.1	Relay Output Type	2 – 16
		2.2.4.2	Transistor Output Type	2 – 17
2.3	Internal	Circuit Diag	jram	2 – 18
	2.3.1	Relay Outp	but Type (C10RS/C10CRS/C10RM/C10CRM/C14RS/ C14RM/C14CRM)	
	2.3.2	Transistor	Output Type	2 – 19
		2.3.2.1	NPN Open Collector Type (C16T/C16CT/C32T/C32CT/T32CT)	2 – 19

		2.3.2.2	PNP Open ((C16P/C160	Collector CP/C32P/	Гуре C32CP/⁻	T32CP)	 	 2 – 21
2.4	Pin Layo	outs					 	 2 – 22
	2.4.1	C10RS/C1	0CRS/C10RI	M/C10CR	М		 	 2 – 22
	2.4.2	C14RS/C1	4CRS/C14RI	M/C14CR	М		 	 2 – 22
	2.4.3	C16T/C160	СТТ				 	 2 – 23
	2.4.4	C16P/C160	СР				 	 2 – 24
	2.4.5	C32T/C320	CT/T32CT				 	 2 – 25
	2.4.6	C32P/C320	CP/T32CP .				 	 2 – 26
2.5	Backing	Up the 10 I	< Step Type				 	 2 – 27

Chapter 3 Expansion I/O Units

3.1	Parts ar	nd Terminolo	Dgy	3 – 3
	3.1.1	Expansion	I/O Unit Types	3 – 4
3.2	Specific	ations		3–6
	3.2.1		pecifications	
	3.2.2		ifications	
		3.2.2.1	Limitations on Number of Simultaneous Input ON Points	3 – 7
	3.2.3	Output Spe	ecifications	
		3.2.3.1	Relay Output Type	
		3.2.3.2	Transistor Output Type	
3.3	Internal	Circuit Diag	gram	3 – 10
	3.3.1		out Type (E8RS/E8RM/E16RS/E16RM)	
	3.3.2		Output Type	
		3.3.2.1	NPN Open Collector Type (E16T/E32T)	. 3 – 11
		3.3.2.2	PNP Open Collector Type (E16P/E32P)	3 – 13
	3.3.3	Expansion	Input Units (E8X/E16X)	3 – 14
	3.3.4	Expansion	Output Units	3 – 15
		3.3.4.1	NPN Open Collector Type (E8YT/E16YT)	3 – 15
		3.3.4.2	PNP Open Collector Type (E8YP/E16YP)	3 – 17
3.4	Pin Lay	outs		3 – 18
	3.4.1	E8RS/E8R	M	3 – 18
	3.4.2	E16RS/E1	6RM	3 – 19
	3.4.3	E16T		3 – 20
	3.4.4	E16P		3 – 21
	3.4.5	E32T		3 – 22
	3.4.6	E32P		3 – 23
	3.4.7	E8X		3 – 24
	3.4.8	E16X		3 – 25
	3.4.9			
	3.4.10	E8YP		3 – 26

3.4.11	E16YT	3 – 27
3.4.12	E16YP	3 – 28

Chapter 4 S-LINK Control Unit

Names and Functions				
Specific	ations			
4.2.1	General Specifications			
4.2.2	S-LINK Controller Specifications			
Wiring tl	he Power Supply			
4.3.1	Wiring to Power Supply Connector			
4.3.2	Wiring to S-LINK Terminal Block			
Sequen	ce of Turning on Power Supplies			
Operatio	on When Power Supply is Turned On			
S-LINK	System Address Recognition			
4.6.1	Recognizing the Address			
4.6.2	Address Setting of S–LINK I/O Device 4 – 12			
Judging	Errors from the Error Indicators $\ldots \ldots \ldots \ldots \ldots 4-13$			
Judging	Errors Address Displays 4 - 14			
	Specific 4.2.1 4.2.2 Wiring th 4.3.1 4.3.2 Sequend Operation S-LINK 4.6.1 4.6.2 Judging			

Chapter 5 I/O Allocation

5.1	I/O Number	5 – 3
5.2	Control Unit	5 – 4
5.3	Expansion I/O Unit	5 – 5

Chapter 6 Installation

6.1	Adding Expansion Units	6 – 3
6.2	Important Notes	6 – 5
6.3	Attachment to DIN Rails	6 – 8
6.4	Installation Using FP0 Slim Type Mounting Plate	6 – 9
6.5	Installation Using FP0 Flat Type Mounting Plate	6 – 10

Chapter 7 Wiring

7.1	Safety Instructions		-	3
-----	---------------------	--	---	---

	7.1.1 7.1.2	Interlock Circuit
	7.1.3	Start Up Sequence
	7.1.4	Momentary Power Failures
	7.1.5	Protecting Power Supply and Output Sections
7.2	Wiring t	he Power Supply to the Control Unit
7.3	Groundi	ing
7.4	Input W	iring
	7.4.1	Sensors
	7.4.2	LED-Equipped Reed Switch 7 – 10
	7.4.3	Two-Wire Type Sensor
	7.4.4	LED-Equipped Limit Switch
7.5	Output V	Wiring
	7.5.1	Protective Circuit for Inductive Loads 7 – 12
	7.5.2	Precautions for Using Capacitive Loads
7.6	Wiring t	he Terminal Type
7.7	Wiring t	he MOLEX Connector Type 7 – 16
7.8	Wiring t	he MIL Connector Type
	7.8.1	Contact Puller Pin for Rewiring 7 – 19
7.9	Wiring t	he RS232C Port

Chapter 8 Precautions During Programming

8.1	8.1.1	Duplicated Output8 – 3Duplicated Output8 – 3When Output is Repeatedwith an OT, KP, SET, or RST Instruction8 – 4
8.2	Handling 8.2.1 8.2.2	g BCD Data
8.3	Handling 8.3.1 8.3.2 8.3.3	g Index Registers
8.4	Operatio 8.4.1 8.4.2 8.4.3 8.4.4	on Errors8 – 10Outline of Operation Errors8 – 10Operation Mode When an Operation Error Occurs8 – 10Dealing with Operation Errors8 – 11Points to Check in Program8 – 12
8.5	Instructi 8.5.1	on of Leading Edge Detection Method

FP0

ix

	8.5.2 8.5.3	Operation and Precautions at Run Start Time Precautions When Using a Control Instruction	
8.6	Precaut	ons for Programming	8 – 18
8.7	Rewrite	Function During RUN	8 – 19
	8.7.1	Operation of Rewrite During RUN	8 – 19
	8.7.2	Cases Where Rewriting During Run is not Possible	8 – 20
	8.7.3	Procedures and Operation of Rewrite During RUN	8 – 22
	8.7.4	Changing Modes in FP Programmer II	8 – 23
8.8	Changir	g the Set Value of Timer/Counter During RUN	8 – 24
	8.8.1	Method of Rewriting Constant in FP Programmer II	8 – 24
	8.8.2	Method of Rewriting a Value in the Set Value Area	8 – 25
8.9	Process	ing During Forced Input and Output	8 – 28
8.10	Setting the Clock/Calendar Timer (T32CT type only)		

Chapter 9 High-speed Counter/Pulse Output/ PWM Output

9.1	Outline	of Functions	. 9 – 3
	9.1.1	Three Functions that Use Built-in High-speed Counter	. 9 – 3
	9.1.2	Performance of Built-in High-speed Counter	. 9 – 4
9.2	Specific	cations and Restricted Items	. 9 – 5
	9.2.1	Specifications	. 9 – 5
	9.2.2	Functions and Restrictions	. 9 – 7
9.3	High-sp	peed Counter Function	. 9 – 9
	9.3.1	Outline of High-speed Counter Function	. 9 – 9
	9.3.2	Types of Input Modes	. 9 – 9
	9.3.3	I/O Allocation	9 – 11
	9.3.4	Instructions Used with High-speed Counter Function	9 – 12
	9.3.5	Sample Program	9 – 14
9.4	Pulse O	Dutput Function	9 – 18
	9.4.1	Outline of Pulse Output Function	9 – 18
	9.4.2	Control Mode	9 – 19
	9.4.3	I/O Allocation and Wiring	9 – 20
	9.4.4	Instructions Used with Pulse Output Function	9 – 22
	9.4.5	Sample Program for Positioning Control	9 – 25
9.5	PWM O	Output Function	9 – 33
	9.5.1	Outline of PWM Output Function	9 – 33
	9.5.2	Instruction Used with PWM Output Function	9 – 33

Chapter 10 General-use Serial Communications

10.1 General-use Serial Communications Function	10.1	10.1	General-use Serial Communications Function		10 – 3
---	------	------	--	--	--------

	10.1.1 General-use Serial Communications		10 – 3
	10.1.2	Data Transmission	10 – 3
	10.1.3	Data Reception	10 – 4
10.2	System	Register Settings	10 – 5
10.3	.3 Operations When Using General-use Serial Communication		10 – 8
	10.3.1	If "None" is Set for Start and Terminal Codes	10 – 8
	10.3.2	If "Yes" has been Set for the Start and Terminal Codes (Start Code: STX, Terminal Code: ETX)	10 – 9

Chapter 11 Self-Diagnostic and Troubleshooting

11.1	Self-Dia	agnostic Function	- 3
	11.1.1	Allowing Duplicated Output11	- 4
	11.1.2	Continuing After an Operation Error11	- 4
11.2	Trouble	shooting	- 5
	11.2.1	ERROR/ALARM LED is Blinking 11	- 5
	11.2.2	ERROR/ALARM LED is ON 11	- 7
	11.2.3	All LEDs are OFF	- 7
	11.2.4	Diagnosing Output Malfunction11	- 8
	11.2.5	PROTECT ERROR is Displayed 11 -	- 10
	11.2.6	Program Mode does not Change to RUN 11 -	- 10

Chapter 12 Specifications

12.1	Performance Specifications	12 – 3		
12.2	I/O Allocation Table			
12.3	3 Relays, Memory Areas and Constants12			
12.4	4 FP0-SL1 S-LINK Address 12			
12.5	Specification: Power Supply Unit I/O Link Unit	12 – 14		
	12.5.1 FP0 Power Supply Unit (AFP0634)	12 – 14		
	12.5.2 FP0 I/O Link Unit	12 – 14		

Chapter 13 Dimensions

13.1	Control	Unit and Expansion I/O Unit	13 – 3
	13.1.1	FP0-C10RS/C10CRS/C14RS/C14CRS/ E8RS/E16RS	13 – 3
	13.1.2	FP0-C10RM/C10CRM/C14RM/C14CRM/ E8RM/E16RM	13 – 3
	13.1.3	FP0-C16T/C16CT/C16P/C16CP/E16T/E16P/E8X/E8YT/E8YP/ E32T/E32P/E16X/E16YT/E16YP	13 – 4

	13.1.4	FP0-C32T/C32CT/C32P/C32CP/T32CT/T32CP	13 – 4	
	13.1.5	FP0 S-LINK Control Unit	13 – 5	
13.2	FP0 Pov	wer Supply Unit	13 – 5	
13.3	Mountin	g on DIN Rail	13 – 6	
13.4	FP0 Slim Type Mounting Plate 13			
13.5	5 FP0 Flat Type Mounting Plate 13			
13.6	6 Cable/Adapter Specifications 1		13 – 9	
	13.6.1	AFC8503/AFC8503S	13 – 9	
	13.6.2	AFC8513	13 – 9	
	13.6.3	AFC8521/AFC8523 (Programmer) 1	13 – 10	
	13.6.4	AFC85305/AFC8531/AFC8532		
		(For extending for the tool port)	13 – 10	
13.7	Connec	tion (between RS232C port and PC)	13 – 11	

Chapter 14 Appendix

System F	Registers / Special Internal Relays / Special Data Registers 14 - 3
14.1.1	Table of System Registers for FP0 14 - 5
14.1.2	Table of Special Internal Relays for FP0 14 - 17
14.1.3	Table of Special Data Registers for FP0
Table of E	Basic Instructions
Table of I	High-level Instructions 14 – 64
Table of E	Error codes 14 – 124
MEWTO	COL-COM Communication Commands
Hexadec	imal/Binary/BCD14 - 139
ASCII Co	odes
ex	I – 1
	14.1.1 14.1.2 14.1.3 Table of F Table of F Table of F MEWTOO Hexadec ASCII Co

Record of changes	•••••••••••••••••••••••••••••••••••••••	R – ⁻	1
-------------------	---	------------------	---

xii

Overview

1.1	Сотро	nents
	1.1.1	FP0 Control Units 1 – 3
	1.1.2	FP0 Expansion Units 1 – 4
	1.1.3	Intelligent Units 1 – 5
	1.1.4	Link Units 1 – 5
	1.1.5	Power Supply Unit 1 – 5
	1.1.6	Options and Additional Parts 1 – 6
1.2	Expans	ion Possibilities
1.3	Combir	nation Possibilities
	1.3.1	Relay Output Type Units 1 – 8
	1.3.2	Transistor Output Type Units
1.4	Prograi	mming Tools

Overview

1.1 Components

1.1.1 FP0 Control Units

	Built-in	Specifications							
Product name	memory (Program capacuty)	Num I/O p	ber of oints	Power supply voltage	Input	Output	Connection type	Part No.	Product No.
FP0 C10	EEPROM (2.7k steps)	10	Input: 6 Output: 4	24 V DC	24 V DC Sink/Sourse	Relay out- put: 2 A	Terminal block	FP0-C10RS	AFP02123
Control Unit	((±common)	P	Molex connector	FP0-C10RM	AFP02113
FP0 C10 Control Unit with RS232C	EEPROM (2.7k steps)	10	Input: 6 Output: 4	24 V DC	24 V DC Sink/Sourse (±common)	Relay out- put: 2 A	Terminal block Molex connector	FP0-C10CRS FP0-C10CRM	AFP02123C AFP02113C
port									
FP0 C14	EEPROM (2.7k steps)	14	Input: 8 Output: 6	24 V DC	24 V DC Sink/Sourse	Relay out- put: 2 A	Terminal block	FP0-C14RS	AFP02223
Control Unit	(2000 00000)		o diputi o		(±common)	put 277	Molex connector	FP0-C14RM	AFP02213
FP0 C14 Control Unit with	EEPROM (2.7k steps)	14	Input: 8 Output: 6	24 V DC	24 V DC Sink/Sourse (±common)	Relay out- put: 2 A	Terminal block	FP0-C14CRS	AFP02223C
RS232C port							Molex connector	FP0-C14CRM	AFP02213C
FP0 C16	EEPROM (2.7k steps)	16	Input: 8 Output: 8	24 V DC	24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-C16T	AFP02343
Control Unit						Transister otuput: PNP 0.1 A		FP0-C16P	AFP02353
FP0 C16 Control Unit with	EEPROM (2.7k steps)	16	Input: 8 Output: 8	24 V DC	24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-C16CT	AFP02343C
RS232C port						Transister otuput: PNP 0.1 A		FP0-C16CP	AFP02353C
FP0 C32	EEPROM (5k steps)	32	Input: 16 Output: 16	24 V DC	24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-C32T	AFP02543
Control Unit						Transister otuput: PNP 0.1 A		FP0-C32P	AFP02553
FP0 C32 Control Unit	EEPROM (5k steps)	32	Input: 16 Output: 16	24 V DC	24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-C32CT	AFP02543C
with RS232C port						Transister otuput: PNP 0.1 A		FP0-C32CP	AFP02553C
FP0 T32 Control Unit with RS232C	EEPROM (10k steps)	32	Input: 16 Output: 16	24 V DC	24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-T32CT	AFP02643C
port and Clock/Cal- endar func- tion						Transister otuput: PNP 0.1 A		FP0-T32CP	AFP02653C
FP0 S-LINK Control Unit with RS232C port	EEPROM (5k steps)	128 (S- LINK sec- tion)	Input: 64 Output: 64 (S–LINK section)	24 V DC	—	—	Terminal block	FP0-SL1	AFP02700

1.1.2 FP0 Expansion Units

	Spec	cifications	;					
Product name	Number of I/O points		Power supply voltage	Input	Output	Connection type	Part No.	Product No.
FP0 E8	8	Input: 8		24 V DC Sink/Sourse (±common)	_	MIL connector	FP0-E8X	AFP03003
	8	Input: 4	24 V DC	24 V DC	Relay output: 2 A	Terminal block	FP0-E8RS	AFP03023
		Output: 4		Sink/Sourse (±common)		Molex connector	FP0-E8RM	AFP03013
Expansion Unit	8	Input: 8	24 V DC	—	Relay output: 2 A	Terminal block	FP0-E8YRS	AFP03020
	8	Output: 8	_	—	Transister otuput: NPN 0.1 A	MIL connector	FP0-E8YT	AFP03040
					Transister otuput: PNP 0.1 A		FP0-E8TP	AFP03050
	16	Input: 16	_	24 V DC Sink/Sourse (±common)	_	MIL connector	FP0-E16X	AFP03003
	16	Input: 8 Output: 8	24 V DC	24 V DC Sink/Sourse (±common)	Relay output: 2 A	Terminal block	FP0-E16RS	AFP03323
						Molex connector	FP0-E16RM	AFP03313
FP0 E16 Expansion		6 Input: 8 Output: 8		24 V DC Sink/Sourse (±common)	Transister otuput: NPN 0.1 A	MIL connector	FP0-E16T	AFP03343
Unit					Transister otuput: PNP 0.1 A		FP0-E16P	AFP03353
	16	Output: 16	_	_	Transister otuput: NPN 0.1 A	MIL connector	FP0-E16YT	AFP03340
					Transister otuput: PNP 0.1 A		FP0-E16YP	AFP03350
FP0 E32	32	Input: 16 Output: 16	_	24 V DC Sink/Sourse	Transister otuput: NPN 0.1 A	MIL connector	FP0-E32T	AFP03543
Expansion Unit				(±common)	Transister otuput: PNP 0.1 A		FP0-E32P	AFP03553

🔊 Notes

- The control units and relay output type expansion units come with a power cable (part number AFP0581). (The transistor output type expansion units need no power cable.)
- 2) The terminal block type relay output units have 2 terminal blocks (9 pins) made by Phoenix. Use a 2.5 mm .098 inch wide screwdriver.
 Preferably use the specific terminal block screwdriver (part

number AFP0806, Phoenix type code SZS0, 4 2.5 mm .098 inch) or equivalent.

- The connector-type relay output units have 2 connectors made by Nihon Molex (Molex type code 51067–0900, 9 pins). Use the specific Molex connector press-fit tool (part number AFP0805, Nihon Molex type code 57189–5000) or equivalent.
- 4) The transistor output units have a press-fit socket for wire-pressed terminal cable and contacts. Use the press-fit tool (part number AXY52000FP) for wire-pressed terminal cable.

1.1.3 Intelligent Units

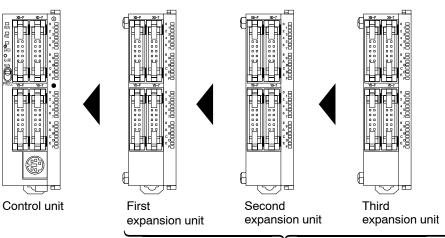
Product name	Specifications	•			Product No.
FP0 Ther-	K, J, T, R thermocouple, Resolution: 0.1 C		K, J, T, R thermocouple, Resolution: 0.1 C		
mocouple Unit	K, J, T, R thermocouple	e, Resolution: 0.1 C		FP0-TC8	AFP0421
FP Web- Server unit		series/RS232C interface and E-mail sending funct	FP-WEB	AFP0610	
FP0 Analog	Input specifications	Number or channels Input range	2 channels : 0 to 5 V, -10 to +10 V (Resolution: 1/4000) 0 to 20 mA (Resolution: 1/4000)	FP0-A21	AFP0480
I/O unit	Output specifications	Number or channels Output range	1 channels : -10 to +10 V (Resolution: 1/4000) 0 to 20 mA (Resolution: 1/4000)		
FP0 A/D Converter Unit	Input specifications	Number or channels Input range	8 channels : 0 to 5 V, -10 to +10 V (Resolution: 1/4000) 0 to 20 mA (Resolution: 1/4000)	FP0-A80	AFP0401
FP0 D/A	Output specifications	Number or channels	4 channels	FP0-A04V	AFP04121
Converter Unit	Output range : -10 to +10 V (Resolution: 1/4000) 4 to 20 mA (Resolution: 1/4000)	FP0-A04I	AFP04123		
FP0 RTD Unit	Input: 6	Pt 100, Pt 1000, Ni 10	0 Resistance	FP0-RTD6	AFP0430

1.1.4 Link Units

Product name	Specifications	Power supply voltage	Part No.	Product No.
FP0 CC– Link Slave Unit	This unit is for making the FP0 function as a slave station of the CC-Link. Only one unit can be connected to the furthest right edge of the FP0 expansion bus. Note: Accuracy will change if an FP0 thermocouple unit is used at the same time. For details, please refer to the catalog or to the CC-Link Unit manual.	24 V DC	FP0-CCLS	AFP07943
FP0 I/O Link Unit	This is a link unit designed to make the FP0 function as a station to MEWNET-F (remote I/O system).	24 V DC	FP0-IOL	AFP0732
C-NET adapter S2 type (for FP0 side)	This is an RS485 adapter designed to allow use of the Computer link function for connecting to a host computer via C-NET. It comes with a 30 cm FP0 tool port cable. A power supply is not required.	_	_	AFP15402
C-NET adapter	This is an RS485 adapter designed to allow use of the Computer link function for connecting to a network-connected PLC via C-NET from a host computer.	100 to 240 V DC	_	AFP8536
(RS485) (for com- puter side)	com-		_	AFP8532
FP Web-Server Unit	Connected with FP series PLCs, it conducts Ethernet communication, sends e-mail, and displays the PLC data on HTML pages.			AFP0610

1.1.5 Power Supply Unit

Product name	Specifications	Part No.	Product No.
FP0 Power supply unit	Input voltage: 100 to 240 V AC Output: 0.7 A, 24 V DC	FP0-PSA4	AFP0634

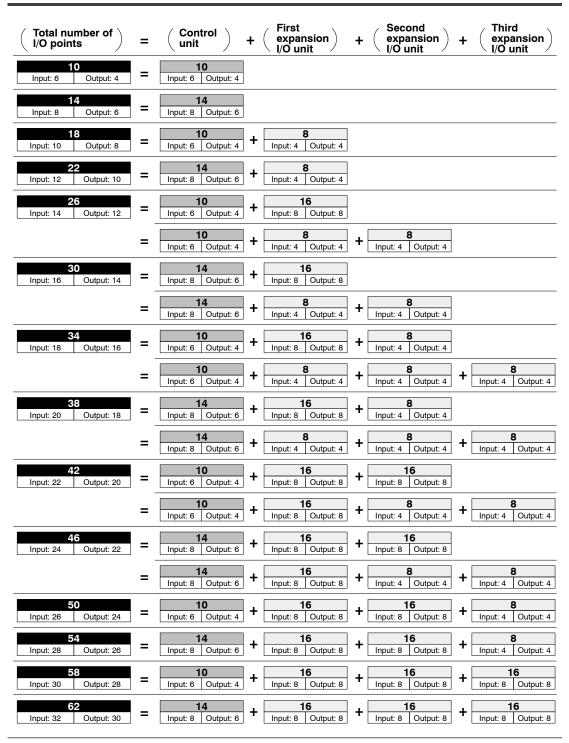

1.1.6 Options and Additional Parts

Product name	Specifications		Product No.
CD Manager Jacobar	Data clear type		AFP8670
FP Memory loader	Data hold type		AFP8671
Terminal screwdriver	Relay output type Necessary when wiring terminals block (Phoenix Contact).	AFP0806	
Molex connector pressure contact tool	Necessary when wiring relay output type and Molex connectors. (MOLEX:	57189–5000)	AFP0805
Multi-wire connector pressure contact tool	Necessary when wiring transistor output type connectors.		AFP52000FP
FP0 Slim 30 type mounting plate	Screw-stop attachment plate for 30 mm/1.181 inch width the unit.		AFP0811 (set for 10)
Slim type FP0 mounting plate	Screw-stop attachment plate for FP0 expansion unit. Slim model.		AFP0803 (set for 10)
Flat type FP0 mounting plate	Screw-stop attachment plate for FP0 control unit. Flat model.		AFP0804 (set for 10)
Relay output Molex type I/O cable	Loose-wiring cable (9 leads) AWG20, with Molex socket attached at	Length: 1 m/3.281 ft.	AFP0551 (2 cable set)
	one end, 0.5 mm ² , 1 set: 2 cables (blue & white).	Length: 3 m/9.843 ft.	AFP0553 (2 cable set)
Transistor output type	Wire-pressed terminal cable (10 leads) AWG22, 0.3 mm ² with con-	Length: 1 m/3.281 ft.	AFP0521 (2 cable set)
I/O cable	nectors attached at one end, 1 set: 2 cables (blue & white).	Length: 3 m/9.843 ft.	AFP0523 (2 cable set)
Flat cable connector for FPS/FP0 transistor type unit	If you are using flat cable connector, request the part specified below for a asymmetrical design to prevent mistaken polarity. (10-pin)	connector with an	AFP0808 (4 sockets per pack)
Terminal socket	Attaches to relay output and terminal block type. Additional part		AFP0802 (2 sockets per pack)
Molex socket	Attaches to relay output and Molex connector types. Additional part		AFP0801 (2 sockets per pack)
Wire-press socket	Attaches to transistor output type. Additional part		AFP0807 (2 sockets per pack)
FP0 Power cable	Attaches to FP0 various units. Additional part Length: 1 m/3.281 ft.		AFP0581 (1 socket per pack)

1.2 Expansion Possibilities

Be sure to check that the units are added according to the following restrictions:

- A maximum of three expansion I/O units or analog I/O units can be connected to one control unit.
- A combination of relay output types and transistor output types is also possible.
- The expansion unit can be attached directly to the control unit easily. Special expansion cables, backplanes, and so forth, are unnecessary as the expansion unit employs a stacking system that uses expansion connector and expansion hooks on the surface of the unit itself.
- Install the FP0 thermocouple unit on the right side of all other expansion units. If it is installed on the left side, the total precision will deteriorate.
- Install the FP0 CC-Link slave unit on the right side of the other expansion units. There is no expansion connector on the right side.
- Install the FP0 RTD unit on the right side of the other expansion units


Maximum possible expansion is with a total of 3 units

Contollable I/O Points

Type of control unit	Control unit only	When the expansion unit is the same output type as the control unit	When the expansion unit is a transistor output type
C10R	10 points	max. 58 points	max. 106 points
C14R	14 points	max. 62 points	max. 110 points
C16T/C16P	16 points	max. 112 points	max. 112 points
C32/T32	32 points	max. 128 points	max. 128 points

1.3 Combination Possibilities

1.3.1 Relay Output Type Units

1 – 8

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

1.3.2 Transistor Output Type Units

1.4 Programming Tools

Type of softwar	e	OS (Operating system)	Hard disc capacity	Product No.
FPWIN GR Ver.2 English-language menu	Full type	Windows® 98 Windows® Me	40 MB or more	AFPS10520
	Upgraded version	Windows ® 2000		AFPS10520R
	Small type	Windows ® XP Windows Vista ®		AFPS11520

Standard ladder diagram tool software "FPWIN GR Ver.2"

Notes

1) Customers who use the "FPWIN GR Ver.1" can use the "FPWIN

GR Ver.2" after purchasing the upgraded version software.

(The upgrade version software can be installed only when the

"Ver.1.1" has been previously installed)

2) Small type version can be used for the "FP-e," "FPΣ," "FP0,"

"FP-X," "FP1," and "FP-M" series.

3) Ver.2.0 can be upgraded to Ver.2.1 or later free of charge at our

web site

IEC61131-3-compliant programming tool software FPWIN Pro Ver.6

Type of software	OS (Operating system)	Hard disc capacity	Product No.
	Windows ® 2000 Windows ® XP Windows Vista ®	100 MB or more	AFPS50560

F

1) The small type and the upgrade version is not available for

Ver. 6.

Notes

2) Ver.2.0 can be upgraded to Ver.2.1 or later free of charge at our

web site

Type of computer and suitable cables

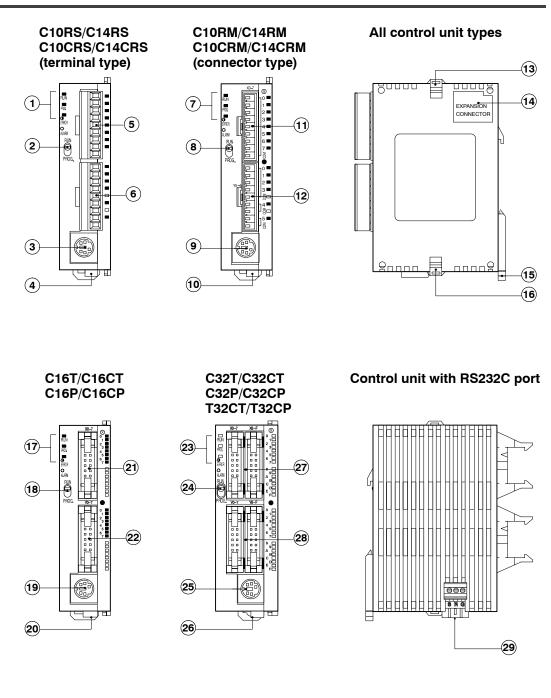
Connector	Connector on PLC side	Product No.
D-Sub 9-pin	Mini DIN round 5-pin	AFC8503
	Mini DIN round 5-pin straight type	AFC8503S

Control Units

2.1	Parts ar	nd Terminolo	pgy 2 - 3
	2.1.1	Control Un	it Types2 – 4
		2.1.1.1	Status Indicator LEDs 2 – 6
		2.1.1.2	<i>Mode Switch</i>
		2.1.1.3	Tool Port
2.2	Specific	ations	
	2.2.1	General Sp	pecifications2 – 7
		2.2.1.1	Weight 2 – 7
		2.2.1.2	Current Consumed by the Control Unit2 – 8
	2.2.2	Performant	ce Specifications 2 – 10
	2.2.3	Input Spec	ifications 2 – 14
		2.2.3.1	Limitations on Number of Simultaneous Input ON Points 2 – 15
	2.2.4	Output Spe	ecifications 2 – 16
		2.2.4.1	Relay Output Type 2 – 16
		2.2.4.2	Transistor Output Type 2 – 17
2.3	Internal	Circuit Diag	ram 2 – 18
	2.3.1	•	out Type 10CRS/C10RM/C10CRM/C14RS/ 14RM/C14CRM) 2 – 18
	2.3.2	Transistor (Output Type 2 – 19
		2.3.2.1	NPN Open Collector Type (C16T/ C16CT/C32T/C32CT/T32CT) . 2 – 19
		2.3.2.2	PNP Open Collector Type (C16P/ C16CP/C32P/C32CP/T32CP) . 2 – 21

🖛 next page

2.4	Pin Lay	outs 2 - 2	22
	2.4.1	C10RS/C10CRS/C10RM/C10CRM 2-2	22
	2.4.2	C14RS/C14CRS/C14RM/C14CRM 2-2	22
	2.4.3	C16T/C16CT 2 - 2	23
	2.4.4	C16P/C16CP 2 - 2	24
	2.4.5	C32T/C32CT/T32CT 2 - 2	25
	2.4.6	C32P/C32CP/T32CP 2 - 2	26


2.1 Parts and Terminology

There are sixteen different control unit types available:

- 1. C10RS terminal type
- 2. C14RS terminal type
- 3. C10CRS (with RS232C port) terminal type
- 4. C14CRS (with RS232C port) terminal type
- 5. C10RM connector type
- 6. C14RM connector type
- 7. C10CRM (with RS232C port) connector type
- 8. C14CRM (with RS232C port) connector type
- 9. C16T
- 10. C16P
- 11. C16CT (with RS232C port)
- 12. C16CP (with RS232C port)
- 13. C32T
- 14. C32P
- 15. C32CT (with RS232C port)
- 16. C32CP (with RS232C port)
- 17. T32CT (with RS232C port)
- 18. T32CP (with RS232C port)

In the next sections you will find a detailed description of each control unit.

2.1.1 Control Unit Types

1 1 1 23 Status indicator LEDs

display the operation mode and error statuses (*section 2.1.1.1).

(2) (8) (18) (24) Mode switch

changes the operation mode (*section 2.1.1.2).

3 9 19 25 Tool port (RS232C)

is used to connect a programming tool (*section 2.1.1.3).

(4) (10) (20) (26) Power supply connector

Supply 24 V DC. It is connected using the power supply cable (AFP0581) that comes with the unit.

(5) Input terminal (9-pin)

6 Output terminal (9-pin)

The input and output terminals ((5) and (6)) use a terminal block socket made by Phoenix Contact Co. (product number: 1840434) (*section 7.6).

(1) Input connector (9-pin)

12 Output connector (9-pin)

The input and output connectors ((1) and (2)) use a connector made by Molex Co. (product number: 51067–0900) (*section 7.7).

13 16 Expansion hook

is used to secure expansion units. The hook is also used for installation on FP0 flat type mounting plate (AFP0804).

14 Expansion connector

connects an expansion unit to the internal circuit of the control unit (*section 6.1).

15 DIN rail attachment lever

allows simple attachment to a DIN rail.

The lever is also used for installation on FP0 slim type mounting plate (AFP0803).

21 Input connector (10-pin)

22 Output connector (10-pin)

Use a MIL type connector for the input and output connectors (2) and 2) (*section 7.8).

(27) Input connectors (10-pin \times 2)

28 Output connectors (10-pin \times 2)

Use a MIL type connector for the input and output connectors (27 and 28) (*section 7.8).

29 RS232C port

Use this port to connect to devices with an RS232C port, such as an I.O.P., a bar code reader, or an image checker, enabling data input and output. (*section 7.9).

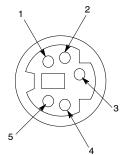
2.1.1.1 Status Indicator LEDs

These LEDs display the current mode of operation or the occurrence of an error.

LED	Description
RUN (green)	Illuminates when in the RUN mode and indicates the execution of a program. It flashes during forced input/output.
PROG. (green)	Illuminates when in the PROG. mode and indicates that operation has stopped.
ERROR/ALARM (red)	Flashes when an error is detected during the self-diagnostic function. Illuminates if a hard- ware error occurs, or if operation slows because of the program, and the watchdog timer is activated.

2.1.1.2 Mode Switch

This switch turns ON and OFF (RUN/PROG.) the operation of the FP0. The FP0 can also be turned ON and OFF by the programming tool.


Switch position	Operation mode
RUN (upward)	This sets the RUN mode. The program is executed and operation begins.
PROG. (downward)	This sets the PROG. mode.

When performing remote switching from the programming tool, the position of the mode switch and the actual mode of operation may differ. Verify the mode with the status indicator LED. Otherwise, restart the FP0 and change the mode of operation with the mode switch.

2.1.1.3 Tool Port

The tool port is used to connect a programming tool.

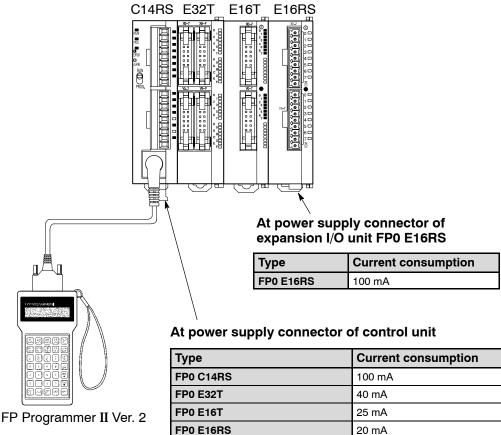
Pin assignment

Pin no.	Abbreviation
1	_
2	SD (TXD)
3	SG
4	RD (RXD)
5	+ 5 V

2.2 Specifications

2.2.1 General Specifications

Item		Description				
Rated operating voltage		24 V DC				
Operating voltage range		21.6 V to 26.4 V DC				
Rated current consu	Imption	300 mA or less (*section 2.2.1.2)				
Allowed momen-	C10/C14	5 ms at 21.6 V, 10 ms at 24 V				
tary power off time	C16/C32 T32/SL1	10 ms at 21.6 V, 10 ms at 24 V				
Ambient temperatur	e	0 °C to +55 °C/32 °F to +131 °F				
Storage temperature	e	-20 °C to +70 °C/-4 °F to +158 °F				
Ambient humidity		30 % to 85 % RH (non-condensing)				
Storage humidity		30 % to 85 % RH (non-condensing)				
Breakdown voltage		500 V AC for 1 minute between I/O terminal and power supply/ground terminal 1500 V AC for 1 minute between I/O terminal and power supply/ground terminal (relay output type only)				
Insulation resistanc	e	min. 100 M Ω (measured with a 500 V DC megger)				
		between I/O terminal and ground terminal				
Vibration resistance	•	10 Hz to 55 Hz, 1 cycle/min: double amplitude of 0.75 mm/ 0.030 in., 10 min o 3 axes				
Shock resistance		Shock of 98 m/s ² or more, 4 times on 3 axes				
Noise immunity		1,000 Vp-p with pulse widths 50 ns and 1 μs (based on in-house measurements)				
Operating condition		Free from corrosive gases and excessive dust				


2.2.1.1 Weight

Туре	Weight	Туре	Weight
C10	approx. 100 g/3.53 oz	SL1	approx. 120 g/4.24 oz
C14	approx. 105 g/3.70 oz	A21	approx. 80 g/2.82 oz
C16	approx. 85 g/3.00 oz	A80	approx. 90 g/3.18 oz
C32	approx. 115 g/4.06 oz	IOL, TC4	approx. 85 g/3.00 oz
T32	approx. 125 g/4.41 oz	TC8	approx. 95 g/3.35 oz
E8R/E8YR	approx. 90 g/3.17 oz	CCLS	approx. 80 g/2.82 oz
E8X/E8YT/E8YP	approx. 65 g/2.29 oz	A04V/A04I/RTD6	approx. 75 g/2.65 oz
E16RS/E16RM	approx. 105 g/3.70 oz		
E16T/E16P/E16X/E16YT/E16YP	approx. 70 g/2.47 oz		
E32T/E32P	approx. 85 g/3.00 oz		

2.2.1.2 Current Consumed by the Control Unit

Unit type		Control unit (The current consumed by the control unit power supply connector. If expansion units or intelligent units are added, the current is increased by the value indicated below.)	Expansion unit (The current consumed by the expansion unit power supply connector. If a unit is not listed below, it means that it has no power supply connector.)	Input circuit (The current consumed by the input circuits of the various units. The value indicates the current that flows into the input circuit.)	Output circuit (The current consumed by the output circuits of the various units. The value indicates the current used to drive the output circuit. The value does not include the load current value.)
FP0 Control unit	FP0-C10	100mA or less	—	25.8mA or less	
	FP0-C14	100mA or less		34.4mA or less	
	FP0-C16	40mA or less		34.4mA or less	28mA or less
	FP0-C32 FP0-T32	60mA or less		68.8mA or less	52mA or less
S-LINK Control unit	FP0-SL1	150mA or less			
FP0 Expansion	FP0-E8X	10mA or less	—	34.4mA or less	—
unit	FP0-E8R	15mA or less	50mA or less	17.2mA or less	—
	FP0-E8YR	10mA or less	100mA or less	—	—
	FP0-E8YT/P	15mA or less	—	—	24mA or less
	FP0-E16X	20mA or less	—	68.8mA or less	—
	FP0-E16R	20mA or less	100mA or less	34.4mA or less	—
	FP0-E16T/P	25mA or less	—	34.4mA or less	24mA or less
	FP0-E16YT/P	25mA or less	—	_	48mA or less
	FP0-E32T/P	40mA or less	_	68.8mA or less	48mA or less
FP0 Intelligent	FP0-A21	20mA or less	100mA or less	—	—
unit	FP0-A80	20mA or less	60mA or less	—	_
	FP0-A04V	20mA or less	100mA or less		_
	FP0-A04I	20mA or less	130mA or less		_
	FP0-TC4, FP0-TC8, FP0-RTD6	25mA or less	_	_	_
	FP0-IOL	30mA or less	40mA or less	_	—
	FP0-CCLS	40mA or less	40mA or less	_	—
Programmable display unit	GT01,GT01R (5VDC,RS232 C)	80mA or less	—	—	—

Current consumption example

FP Programmer II Ver. 2

C-NET Adapter S2 Total current consumption 50 mA

235 mA or less

2.2 Specifications

2.2.2 Performance Specifications

Item		Relay out	put type	Transisto	or output ty	pe	S-LINK type		
		C10RS/ C10RM/ C10CRS/ C10CRM		,	C32T/ C32P/ C32CT/ C32CP	T32C	SL1		
Programmi	Programming method/Control method			ol/Cyclic ope	eration			-	
Controllab points	Controllable I/O points Basic unit With expansion unit 1 When config- ured with same output type as control unit With expansion unit 2 When relays and transistors are mixed		Total: 10 Input: 6 Output: 4	Total: 14 Input: 8 Output: 6	Total: 16 Input: 8 Output: 8	Total: 32 Input: 16 Output: 16	Total: 32 Input: 16 Output: 16	Max. 128 Input: 64 Output: 64 at S–LINK block	
			Max. 58	Max. 62	Max. 112	Max. 128	Max. 128	Max. 96 at expansion block	
			Max. 106	Max. 110	Max. 112	Max. 128	Max. 128		
Program m	emory	Built-in memory	Built in EEF	ROM (witho	ut battery)				
Program ca			2,720 steps 5,000 steps				10,000 steps	5,000 steps	
	Numbers of Basic		83						
instruction		High-level	145						
Operation	•		0.9µs/step (by basic instruction)						
I/O refresh		time	With no expansion board: 0.3ms With expansion board(s): 0.3ms and (1 x number of expansion boards) ms						
Operation memory points	Relay	Internal relay (R)	1,008 points (R0 to R62F)				1,008 points (R0 to R62F) (* Note 1)	1,008 points (R0 to R62F)	
		Special internal relay (R)	64 points (R9000 to R903F)						
		Timer/Counter (T/C)	144 points (initial setting is 100 timer points, T0 to T99 / 44 counter points, C100 to C143 (* Note 2)) Timer range: 1ms, 10ms, 100ms, 1s; selected by instruction						
	Memory area Data register (DT) Special data register (DT)		1,660 words (DT0 to DT1659) 6,144 words (DT0 to DT6143)			16,384 words (DT0 to DT16383) (* Note 1)	6,144 words (DT0 to DT6143)		
			112 words (DT9000 to DT9111)				112 words (DT90000 to DT90111)	112 words (DT9000 to DT9111)	
		Index register (IX, IY)	r 2 words						
Differential points (DF, DF/)			Unlimited of points						
Master control relay points (MCR)		32 points							
Number of	labels (JF	P and LOOP)	64 labels				255 labels	64 labels	

Item		Relay out	put type	Transisto	or output ty	/pe	S-LINK		
		C10RS/ C10RM/ C10CRS/ C10CRM	C14RS/ C14RM/ C14CRS/ C14CRM	C16T/ C16P/ C16CT/ C16CP	C32T/ C32P/ C32CT/ C32CP	T32C	type SL1		
Number of s	step ladders	128 stages	L		L	704 stages (* Note 1)	128 stages		
Number of s	subroutines	16 subrouti	nes			100 sub- routines	16 sub- routines		
Number of i	interrupt programs		e (external 6				1 program (internal 1 point)		
Self-diagno	sis function	Such as wa	atchdog time	r, program s	yntax check				
Clock/calen	der function	Not availab	le			Available (* Note 3)	Not available		
Special functions	Pulse catch input	Total 6 poir / X0 to X1:					Not available		
	Interrupt input	X2 to X5:							
	RS232C port (* Note 4)(Non–isolated)	Transmissi	300/600/120 on distance:	3m/9.84ft.					
	(Only units with an RS232C port)	(products n	ock: 3–pin, n umber: MKD ation methoo	S1/3-3.5)		t Co.			
	Periodical interrupt	0.5ms to 30)s interval						
F	Constant scan	Available							
-	Password	Available							
-	High- speed counter	Counter m	ode:				Not		
	function (* Note 5)	Addition/subtraction (one phase) (* Note 7)					available		
	(* Note 3)	– Input point number:							
		Four channels maximum							
		- Maximum counting speed:							
		10kHz maximum for all 4 channels							
		- Input contacts used:							
		X0: count input (ch 0) X1: count input (ch 1) X2: reset input (*Note 8) X3: count input (ch 2) X4: count input (ch 3) X5: reset input (*Note 8)							
		- Minimum input pulse width:							
				•					
		Counter n	(4	ιυυμs, <	okHZ>		Not		
			e/individual/	direction doc	ision (two n	haco)	available		
					ιοιοτι (ιωο-μ	ndsej			
			oint number:						
			iels maximui m counting						
			m counting	-					
		2kHz maximum for all 2 channels							
		- Input contacts used: X0: count input (ch 0) X1: count input (ch 0) X2: reset input X2: reset input							
		– Minimum input pulse width:							
		X0, X1		50µs, <10k⊦	lz>	X0, X150μs, <10kHz>			

2.2 Specifications

Item		Relay out	put type	Transisto	Transistor output type			
				C14RS/ C14RM/ C14CRS/ C14CRM	C16T/ C16P/ C16CT/ C16CP	C32T/ C32P/ C32CT/ C32CP	T32C	SL1
Special functions	Pulse output	Output point number	Not availab	le		Two independent points (Y0 and Y1)(no interpolation function)		
1	func- tion (* Note 6,10)	Output frequency	Not availab	Not available		40Hz to 10kHz (Y0/Y1: one-point output) 40Hz to 5kHz (Y0/Y1: two-point output)		
	PWM output	Output point number	Not availab	le	Two points	(Y0 and Y1)		Not available
	func- tion (* Note 6)	Output frequency	3(Frequency: 0.15Hz to 38Hz, (* Note 9) Duty: 0.1% to 99.9%		Frequen- cy: 0.15Hz to 1KHz Duty: 0.1% to 99.9%	Not available
Memory backup	Program and system register		EEPROM					
(* Note 6, 12)			EEPROM Areas which are held if the supply fails are fixed, and retained by the EEPROM. – Number of points/words fixed hold areas in the vari memories Counters: 4 points Internal relays: 32 points Date registers: 8 words (* Note 13)		nd are M. ds of the /arious	nd are M. ds of the various which are held if the source supply fails are fixed, and are built-in fixed, and are built-in charge- able (sec-		Areas which are held if the power supply fails are fixed, and are retained by the EEROM. - Number of points/ words of the fixed hold areas in the various memories Counters: 16 points Internal re- lays: 128 points Date registers: 32 words (* Note 14)
	Backup I instruction	by the F12/F13 on	Available fo	or all data reg	gisters			

🔊 Notes

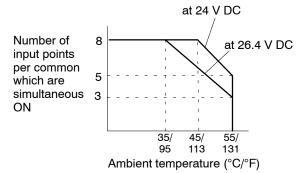
- 1) Hold or non-hold type can be set using the system registers.
- 2) The proportion of timer points to counter points can be changed using a system register 5.

Notes

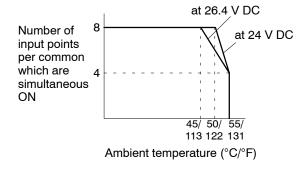
- 3) Precision of calender timer: At 0°C/32°F, less than 139 second error per month. At 25°C/77°F, less than 72 seconds error per month. At 55°C/131°F, less than 169 seconds error per month. This accuracy is considered to be the worst fluctuation coefficient value based on fluctuations in the normal voltage of 5V and the battery backup voltage of 3V. Also, F157 and F158 (time/date addition and subtraction instructions) cannot be used.
- 4) When using the RS232C port for communication, we recommend using resend processing. The driver IC for the RS232C is in full conformance with EIA/TIA-232E and CCITT V.28 standards.
- 5) The combinations 1 phase \times 2 channels and 2 phases \times 1 channel are also possible for the high-speed counter.
- 6) The internal relay, data register, and timer/counter hold areas of the T32CT control unit (10 k step type) can be changed by the system registers. The number of points in the table is the value when the system registers are initial values.
- 7) The max. counting speed (10kHz) is the counting speed with a rated input voltage of 24V DC and an ambient temperature of 25°C. The counting speed (frequency) will decrease depending on the voltage and temperature.
- 8) If both reset inputs X0 and X1 are reset, X2 will be the reset input of X1. In the same way, for X3 and X4, X5 acts as the reset input of X4.
- 9) With a CPU of Ver. 1.2 or a subsequent version, the frequency will be 0.15Hz to 1kHz.
- 10) The maximum is 9.5kHz when the positioning control instruction (F168) is executed.
- 11) Precautions when using the battery backup function Secondary (chargeable) battery is used as backup battery in the FP0 T32C control unit. The battery is not charged before the unit is shipped, so please make sure that the built-in backup battery have been charged before using the unit.
- 12) The program, system resisters and the hold type areas (internal relay, data register and counter) are backed up by the built in EEPROM.
- 13) The possible number of write times by the EEPROM write instruction is 100,000 or less.
- 14) The possible number of write times by the EEPROM write instruction is 10,000 or less.
- 15) If the power supply is turned off while the P13 instruction is being executed, the data written by the P13 instruction may not be written in the EEPROM properly. Also, the area where the internal relays, data registers and timer/counter are held may not be held properly. Do not turn off the power supply while the P13 instruction is being executed.

2.2.3 Input Specifications

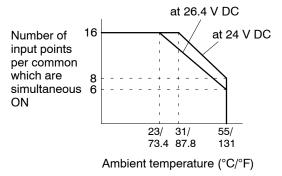
Item		Description
Insulation method		optical coupler
Rated input voltage		24 V DC
Rated input current		approx. 4.3 mA (at 24 V DC)
Input impedance		approx. 5.6 kΩ
Operating voltage ra	nge	21.6 to 26.4 V DC
Input points per common (*Note 1)	C10RM, C10CRM, C10RS, C10RS	6 points/common
	C14RM, C14CRM, C14RS, C14RS	8 points/common
	C16T, C16CT, C16P, C16CP	8 points/common
	C32T, C32CT, C32P, C32CP T32CT, T32CP	16 points/common
ON voltage/ON curre	ent	19.2 V or less/3 mA or less
OFF voltage/OFF cur	rrent	2.4 V or more/1 mA or more
Response time	OFF ↔ ON	50 μs or less (at X0, X1) (* Note 2)
(at 24 V DC and 25		100 µs or less (at X2 to X5) (* Note 2)
°C/66 °F)		2 ms or less (at X6 to XF)
	ON ↔ OFF	the same as above
Operating mode indicator		LED


- 1) Either positive or negative polarity is possible for the input voltage supply.
- 2) X0 through X5 are inputs for the high-speed counter and have a fast response time. If used as normal inputs, we recommend inserting a timer in the ladder program as chattering and noise may be interpreted as an input signal.

2.2 Specifications


2.2.3.1 Limitations on Number of Simultaneous Input ON Points

Keep the number of input points per common which are simultaneously ON within the following range as determined by the temperature.


FP0-C14RM/C14CRM/C14RS/C14CRS

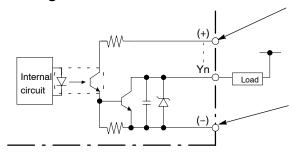
FP0-C16T/C16CT/C16P/C16CP

FP0-C32T/C32CT/C32P/C32CP/T32CT/T32CP

2.2.4 Output Specifications

2.2.4.1 Relay Output Type

FP0 relay output types: C10RM, C10CRM, C10RS, C10CRS, C14RM, C14CRM, C14RS, C14RS, C14CRS			
Item		Description	
Output type		Normally open (1 Form A) relay output	
Rated control capacity		2 A 250 V AC, 2 A 30 V DC (4.5 A maximum per common) (at Resistance load)	
Output points per common	C10RM, C10CRM, C10RS, C10CRS	2 points/common + 1 point/common +1 point/common	
	C14RM, C14CRM, C14RS, C14CRS	4 points/common + 1 point/common + 1 point/common	
Response time	$OFF \to ON$	approx. 10 ms	
	$ON \rightarrow OFF$	approx. 8 ms	
Mechanical life time		20,000,000 operations or more	
Electrical life time		100,000 operations or more	
Surge absorber		None	
Operating mode indicator		LED	

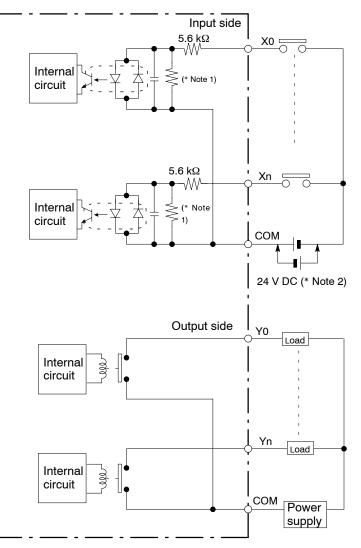

2.2.4.2 Transistor Output Type

FP0 transistor output types: C16T, C16CT, C16P, C16CP, C32T, C32CT, C32P, C32CP, T32CT, T32CP

Item		Description
Insulation method		optical coupler
Output type		open collector
Rated load voltage		NPN open collector type: 5 to 24 V DC (* Note) PNP open collector type: 24 V DC
Operating load volta	ge range	NPN open collector type: 4.75 to 26.4 V DC PNP open collector type: 21.6 to 26.4 V DC
Max. load current		0.1 A
Max. surge current		0.3 A
Output points per common	C16T, C16CT, C16P, C16CP	8 points/common
	C32T, C32CT, C32P, C32CP T32CT, T32CP	16 points/common
OFF state leakage cu	irrent	100 μA or less
ON state voltage dro	р	1.5 V or less
External power	Voltage	21.6 to 26.4 V DC
supply for driving internal circuit	Current	Y0 and Y1: 5 mA/1 point, except Y0 and Y1: 3 mA/1 point
Response time	$OFF \to ON$	1 ms or less (Y0 and Y1 only: 50 μs or less)
	$ON \rightarrow OFF$	1 ms or less (Y0 and Y1 only: 50 µs or less)
Surge absorber		Zener diode
Operating mode indicator		LED

Note

For NPN open collector type, able to be used with different voltages for the load voltage and the external power supply for driving the internal circuit.


External power supply for driving internal circuit (21.6 V to 26.4 V DC) Rated load voltage (5 V to 24 V DC)

Ground for load voltage and for external power supply for driving internal circuit

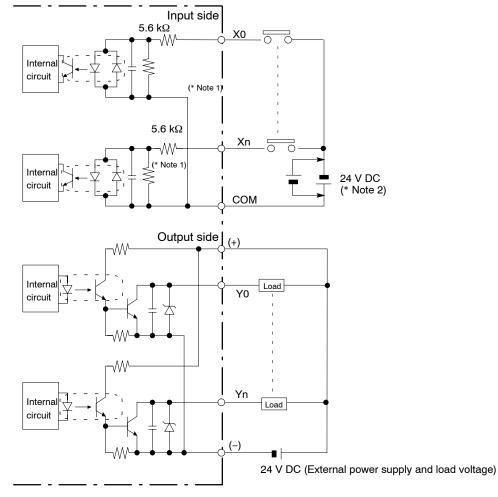
2.3 Internal Circuit Diagram

2.3.1 Relay Output Type (C10RS/C10CRS/C10RM/C10CRM/C14RS/C14CRS/C14RM/C14CRM)

FP0-C10RS/C10CRS/C10RM/C10CRM/C14RS/C14CRS/C14RM/C14CRM

Notes

- 1) The resistor in the control unit is 2 k Ω for X0 through X5, and 1 k Ω for X6 and X7.
- 2) Either positive or negative polarity is possible for the input voltage supply.

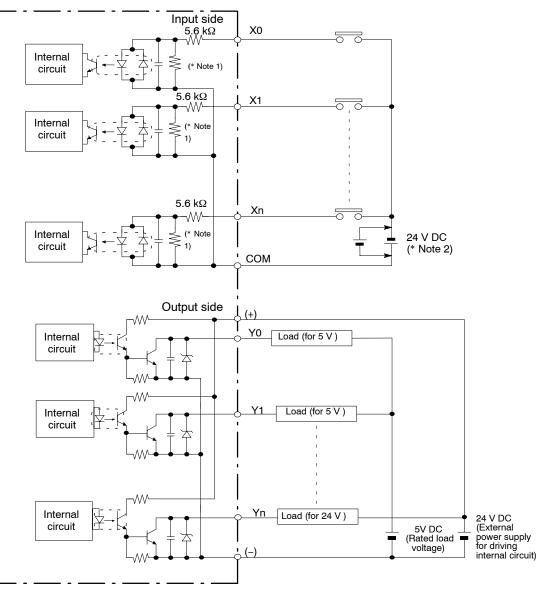

2.3.2 Transistor Output Type

2.3.2.1 NPN Open Collector Type (C16T/C16CT/C32T/C32CT/T32CT)

When the load voltage and external power supply are the same

This example is when the values of the rated load voltage and external power supply for driving internal circuit are the same. In this situation, there is only one power supply.

FP0-C16T/C16CT/C32T/C32CT

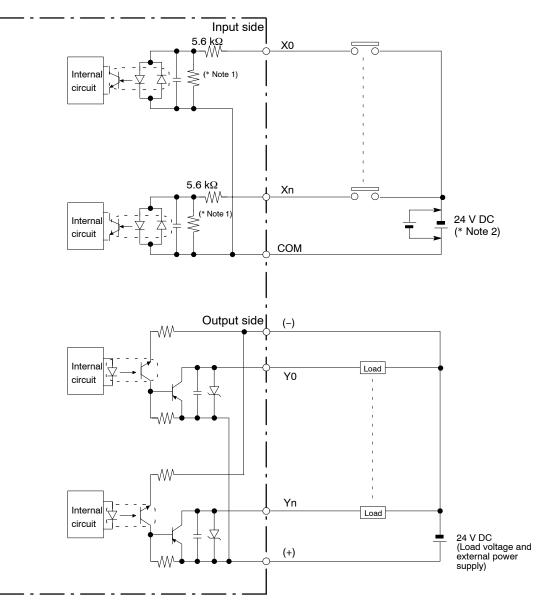

Notes

- 1) The resistor in the control unit is 2 k Ω for X0 through X5, and 1 k Ω for X6 through XF.
- 2) Either positive or negative polarity is possible for the input voltage supply.

When the load voltage differs from the 24 V DC external power supply for the driving the internal circuit

Other than 24 V DC load voltage, 5 V DC and 12 V DC and other load voltages can be connected.

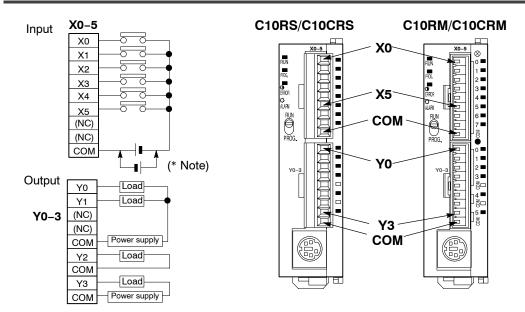
FP0-C16T/C16CT/C32T/C32CT/T32CT

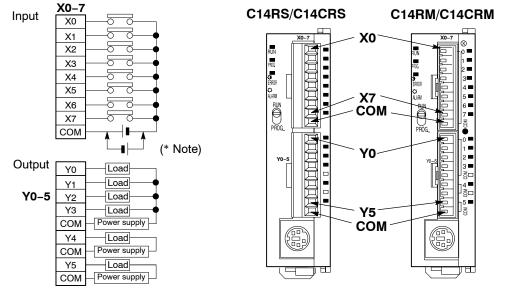


i Notes

- 1) The resistor in the control unit is 2 k Ω for X0 through X5, and 1 k Ω for X6 through XF.
- 2) Either positive or negative polarity is possible for the input voltage supply.

2.3.2.2 PNP Open Collector Type (C16P/C16CP/C32P/C32CP/T32CP)

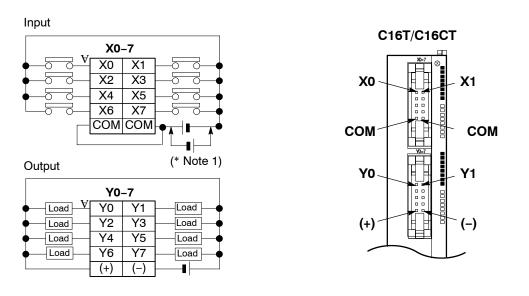

FP0-C16P/C16CP/C32P/C32CP/T32CP


- 1) The resistor in the control unit is 2 k Ω for X0 through X5, and 1 k Ω for X6 through XF.
- 2) Either positive or negative polarity is possible for the input voltage supply.

2.4 Pin Layouts

2.4.1 C10RS/C10CRS/C10RM/C10CRM

2.4.2 C14RS/C14CRS/C14RM/C14CRM



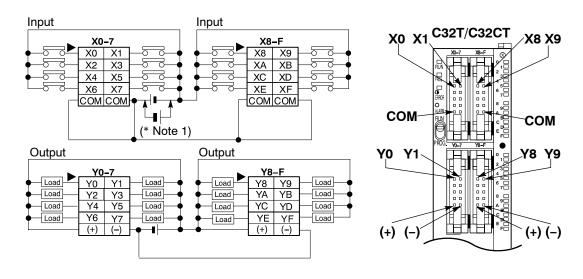
Note

Either positive or negative polarity is possible for the input voltage supply.

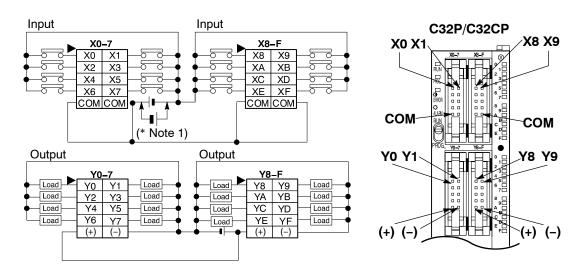
FP0

2.4.3 C16T/C16CT

Notes


- The two COM terminals of input terminal (X0–7) are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.

2.4.4 C16P/C16CP


- The two COM terminals of input terminal (X0–7) are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.

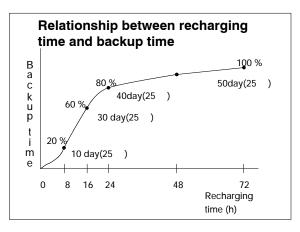
2.4.5 C32T/C32CT/T32CT

- The four COM terminals of input terminals (X0–7 and X8–F) are connected internally, however they should be externally connected as well.
- The (+) terminals of output terminals (Y0–7) and output terminals (Y8–F) are connected internally, however they should be externally connected as well.
- The (-) terminals of output terminals (Y0-7) and output terminals (Y8-F) are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.

2.4.6 C32P/C32CP/T32CP

- The four COM terminals of input terminals (X0–7 and X8–F) are connected internally, however they should be externally connected as well.
- The (+) terminals of output terminals (Y0–7) and output terminals (Y8–F) are connected internally, however they should be externally connected as well.
- The (-) terminals of output terminals (Y0-7) and output terminals (Y8-F) are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.

2.5 Backing Up the 10 K Step Type


Recharging the internal backup battery

A secondary battery (rechargeable type) is used as the backup battery in the control unit (10 K step type). When shipped, this battery is not charged; therefore, please make sure it is sufficiently charged before using. Recharging is automatic when DC power is supplied.

When backup is possible of operation memory

Relationship between recharging time and backup time

The number of days for the backup time changes with the proportion of recharging time. Please use the graph below to verify the number of days for the backup time.

Number of days for backup depending on ambient temperature

The number of days for the backup differs, as shown in the table below, when recharging is done for 72 hours at a certain ambient temperature.

Ambient temperature	Number of days for backup time
70 °C	Approx. 14 days
25 °C	Approx. 50 days
-20 C	Approx. 25 days

Predicted life of internal backup battery

When the control unit is on (when power is supplied) the internal backup battery life will differ depending on the ambient temperature. Refer to the table below to predict the life of the internal backup battery.

Note: When the control unit is off (when power is not supplied), temperature has almost no effect on the battery life.

Ambient temperature	Internal backup battery life
55 °C	Approx. 430 days (approx. 1 year)
45 °C	Approx. 1,200 days (approx. 3 years)
40 ° C	Approx. 2,100 days (approx. 6 years)
35 ° C	Approx. 3,300 days (approx. 9 years)
34 ∘C and less	Approx. 10 years

Range of backup possible with the internal backup battery

- The range that the user specifies with the programming tool from among the computation memories given below, will become the holding backup area.
 - 1) Timer/counter (T/C)
 - 2) Internal relay (R)
 - 3) Data register (DT)
 - 4) Step ladder
- If the user does not make a designation, the default setting range will become the backup holding area.
- The clock/calendar timer value is also backed up.
- The program and system registers are held in EEPROM with no relation to the internal backup battery.

Handling of the internal backup battery

It is not possible to replace the internal backup battery when it has been exhausted or has exceeded its life span.

Cautions regarding the backup of data

- The clock/calendar timer value is backed up by the secondary battery.
- Begin use only after the secondary battery has been sufficiently charged.

For reference

To read and use the initial settings data when starting operation, you can also write the data to EEPROM by using the F12 EEPROM read instruction and the F13 EEPROM write instruction. If the power supply is turned off while the P13 instruction is being executed, data may not be written in the EEPROM properly.

Also, the area where the internal relays, data registers and timer/counter are held may not be held properly.

Do not turn off the power supply while the P13 instruction is being executed.

Expansion I/O Units

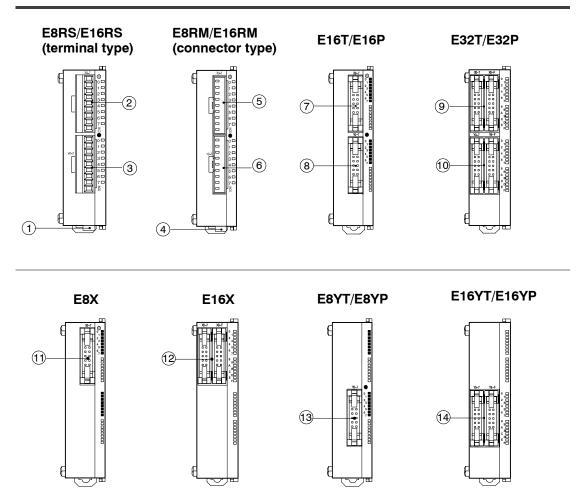
3.1	Parts a	and Terminology	
	3.1.1	Expansion	I/O Unit Types 3 – 4
3.2	Specific	cations	
	3.2.1	General S	pecifications
	3.2.2	Input Spec	ifications3 – 6
		3.2.2.1	Limitations on Number of Simultaneous Input ON Points 3 – 7
	3.2.3	Output Spe	ecifications
		3.2.3.1	Relay Output Type
		3.2.3.2	Transistor Output Type
3.3	Internal Circuit Diagram 3 – 10		
	3.3.1	Relay Outµ 3 – 10	out Type (E8RS/E8RM/E16RS/E16RM)
	3.3.2	Transistor	Output Туре 3 – 11
		3.3.2.1	NPN Open Collector Type (E16T/E32T)
		3.3.2.2	PNP Open Collector Type (E16P/E32P) 3 – 13
	3.3.3	Expansion	Input Units (E8X/E16X) 3 – 14
	3.3.4	Expansion	Output Units 3 – 15
		3.3.4.1	NPN Open Collector Type (E8YT/E16YT) 3 – 15
		3.3.4.2	PNP Open Collector Type (E8YP/E16YP) 3 – 17
			🖛 next page

FF	20	

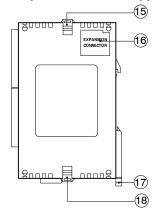
3.4	Pin Lay	outs 3 – 18
	3.4.1	E8RS/E8RM 3 – 18
	3.4.2	E16RS/E16RM 3 – 19
	3.4.3	E16T 3 - 20
	3.4.4	E16P 3-21
	3.4.5	E32T 3 - 22
	3.4.6	E32P 3 - 23
	3.4.7	<i>E8X</i> 3 – 24
	3.4.8	E16X 3 - 25
	3.4.9	E8YT 3-26
	3.4.10	E8YP 3 - 26
	3.4.11	E16YT 3 – 27
	3.4.12	E16YP 3 - 28

3.1 Parts and Terminology

3.1 Parts and Terminology


There are fourteen different expansion I/O unit types available:

- 1. E8RS terminal type
- 2. E16RS terminal type
- 3. E8RM connector type
- 4. E16RM connector type
- 5. E16T
- 6. E16P
- 7. E32T
- 8. E32P
- 9. E8X input type
- 10. E16X input type
- 11. E8YT output type
- 12. E8YP output type
- 13. E16YT output type
- 14. E16YP output type


In the next sections you will find a detailed description of each expansion I/O unit.

FP0

3.1.1 Expansion I/O Unit Types

All expansion I/O unit types

FP0

1 4 Power supply connector

Supply 24 V DC. It is connected using the power supply cable (AFP0581) that comes with the unit.

2 Input terminal (9-pin)

3 Output terminal (9-pin)

The input and output terminals ((2) and (3)) use a terminal block socket made by Phoenix Contact Co. (product number: 1840434) (*section 7.6).

(5) Input connector (9-pin)

6 Output connector (9-pin)

The input and output connectors ((5) and (6)) use a connector made by Molex Japan Co. (product number: 51067-0900) (*section 7.7).

- (7) (1) Input connector (10-pin)
- (8) (13) Output connector (10-pin)
- (9) (12) Input connector (10-pin \times 2)

10 14 Output connector (10-pin \times 2)

Use a MIL type connector for the input and output connectors (7 to (4) (*section 7.8).

15 18 Expansion hook

is used to secure expansion units.

16 Expansion connector

connects an expansion unit to the internal circuit of the expansion I/O unit (*section 6.1).

17 DIN rail attachment lever

allows simple attachment to a DIN rail.

The lever is also used for installation on FP0 slim type mounting plate (AFP0803).

3.2 Specifications

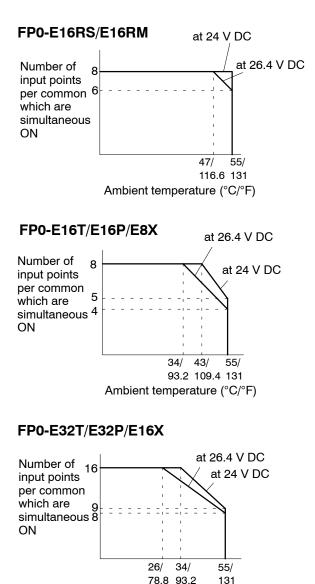
3.2.1 General Specifications

For more details on the general specifications, refer to section 2.2.1.

3.2.2 Input Specifications

Item		Description
Insulation method		optical coupler
Rated input volta	age	24 V DC
Rated input curr	ent	approx. 4.3 mA (at 24 V DC)
Input impedance		approx. 5.6 kΩ
Operating voltag	je range	21.6 to 26.4 V DC
Input points per common	E8RS, E8RM	4 points/common
(* Note)	E16RS, E16RM, E16T, E16P, E8X	8 points/common
	E32T, E32P, E16X	16 points/common
ON voltage/ON c	urrent	19.2 V or less/3 mA or less
OFF voltage/OFF current		2.4 V or more/1 mA or more
Response time	OFF ↔ ON	2 ms or less
(at 24 V DC and 25 °C/66 °F)	ON ↔ OFF	the same as above
Operating mode	indicator	LED

🔊 Note


Either positive or negative polarity is possible for the input voltage supply.

3 – 6

3.2 Specifications

3.2.2.1 Limitations on Number of Simultaneous Input ON Points

Keep the number of input points per common which are simultaneously ON within the following range as determined by the temperature.

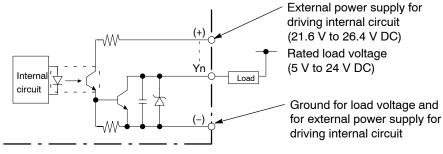
Ambient temperature (°C/°F)

3.2.3 Output Specifications

3.2.3.1 Relay Output Type

FP0 relay output types: E8RS, E8RM, E16RS, and E16RM

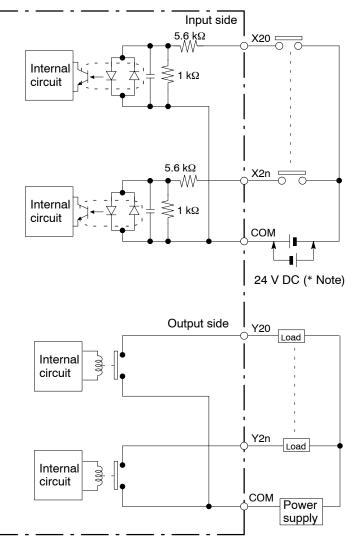
Item		Description
Output type		Normally open (1 Form A) relay output
Rated control capacity		2 A 250 V AC, 2 A 30 V DC (4.5 A maximum per common) (at Resistance load)
Output points per common	E8RS, E8RM	4 points/common
	E16RS, E16RM	8 points/common
Response time	OFF ↔ ON	approx. 10 ms
	ON ↔ OFF	approx. 8 ms
Mechanical life t	ime	20,000,000 operations or more
Electrical life time		100,000 operations or more
Surge absorber		None
Operating mode	indicator	LED


3.2.3.2 Transistor Output Type

FP0 transistor output types: E16T, E16P, E32T, E32P, E8YT, E8YP, E16YT, E16YP

Item		Description
Insulation method		optical coupler
Output type		open collector
Rated load voltage	ge	NPN open collector type: 5 to 24 V DC (* Note) PNP open collector type: 24 V DC
Operating load v range	oltage	NPN open collector type: 4.75 to 26.4 V DC PNP open collector type: 21.6 to 26.4 V DC
Max. load curren	t	0.1 A
Max. surge curre	ent	0.3 A
Output points per common	E16T, E16P, E8YT, E8YP	8 points/common
	E32T, E32P, E16YT, E16YP	16 points/common
OFF state leakag	je current	100 μA or less
ON state voltage	drop	1.5 V or less
External power supply for	Voltage	21.6 to 26.4 V DC
driving internal circuit	Current	Y0 and Y1: 5 mA/1 point, except Y0 and Y1: 3 mA/1 point
Response time	$OFF \to ON$	1 ms or less (Y0 and Y1 only: 50 μs or less)
	$ON \rightarrow OFF$	1 ms or less (Y0 and Y1 only: 50 μs or less)
Surge absorber		Zener diode
Operating mode indicator		LED

i Note

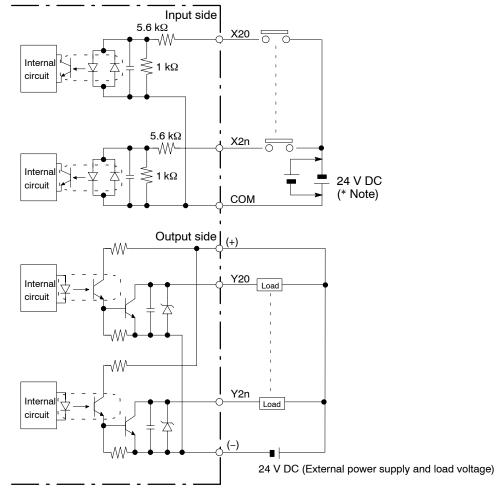

For NPN open collector type, able to be used with different voltages for the load voltage and the external power supply for driving the internal circuit.

3.3 Internal Circuit Diagram

3.3.1 Relay Output Type (E8RS/E8RM/E16RS/E16RM)

FP0-E8RS/E8RM/E16RS/E16RM

- Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit (*section 5.3).

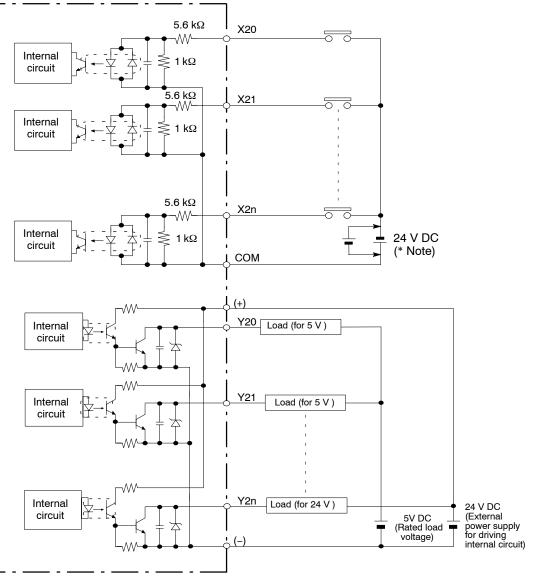

3.3.2 Transistor Output Type

3.3.2.1 NPN Open Collector Type (E16T/E32T)

When the load voltage and external power supply are the same

This example is when the values of the rated load voltage and external power supply for driving internal circuit are the same. In this situation, there is only one power supply.

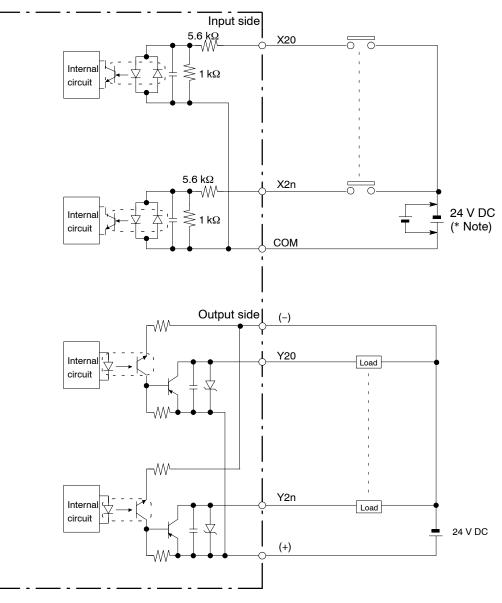
FP0-E16T/E32T


i Notes

- Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit (*section 5.3).

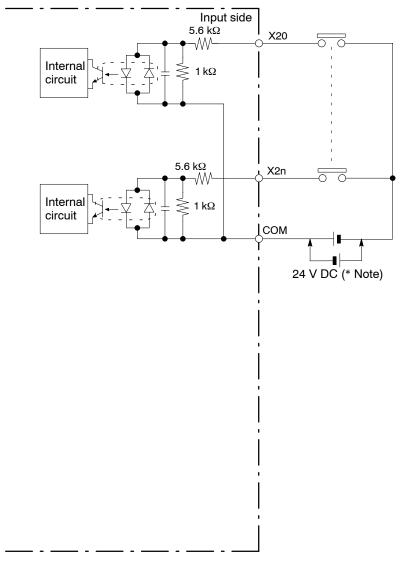
When the load voltage differs from the 24 V DC external power supply for the driving the internal circuit

Other than 24 V DC load voltage, 5 V DC and 12 V DC and other load voltages can be connected.


FP0-E16T/E32T

- Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit (*section 5.3).

3.3.2.2 PNP Open Collector Type (E16P/E32P)

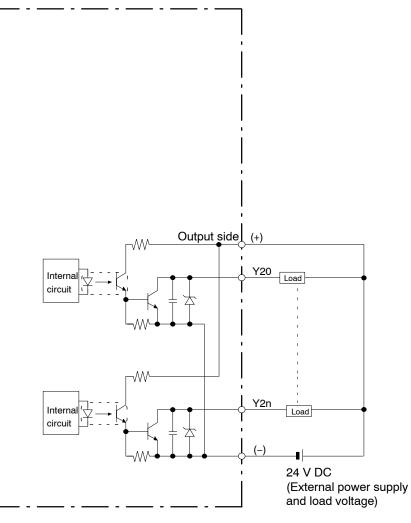

FP0-E16P/E32P

- Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit (*section 5.3).

3.3.3 Expansion Input Units (E8X/E16X)

FP0-E8X/E16X

- Either positive or negative polarity is possible for the input voltage supply.
- The input number given above is the input number when the expansion input unit is installed as the first expansion unit (*section 5.3).

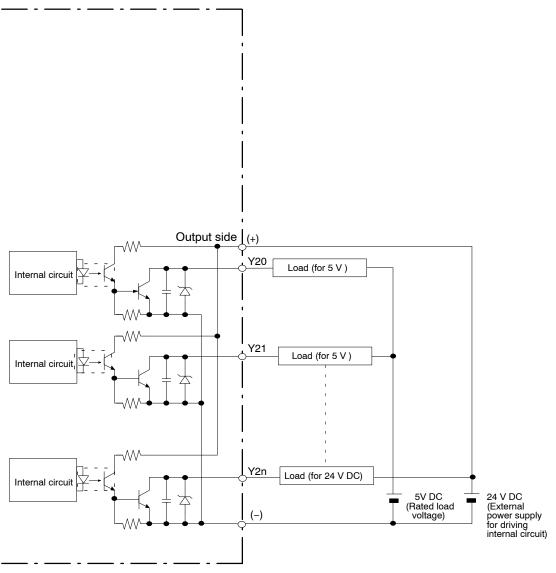

3.3.4 Expansion Output Units

3.3.4.1 NPN Open Collector Type (E8YT/E16YT)

When the load voltage and external power supply are the same

This example is when the values of the rated load voltage and external power supply for driving the internal circuit are the same. In this situation, there is only one power supply.

FP0-E8YT/E16YT

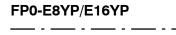

Note

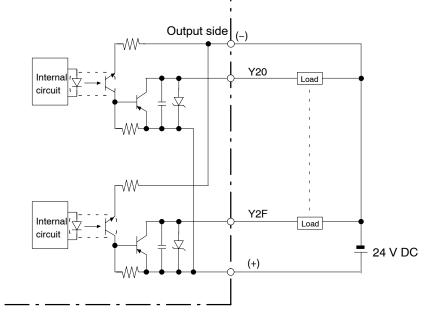
The output number given above is the output number when the expansion output unit is installed as the first expansion unit (*section 5.3).

When the load voltage differs from the 24 V DC external power supply for the driving the internal circuit

Other than 24 V DC load voltage, 5 V DC and 12 V DC and other load voltages can be connected.

FP0-E8YT/E16YT

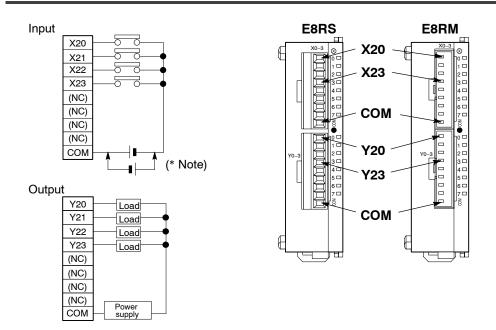



Note

The output number given above is the output number when the expansion output unit is installed as the first expansion unit (*section 5.3).

3.3 Internal Circuit Diagram

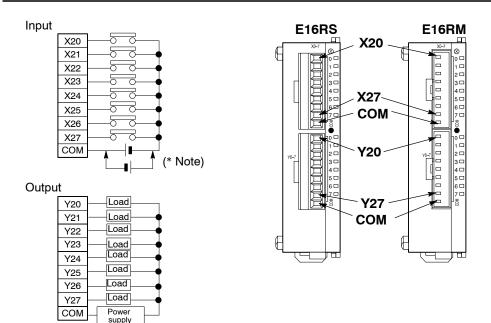
3.3.4.2 PNP Open Collector Type (E8YP/E16YP)



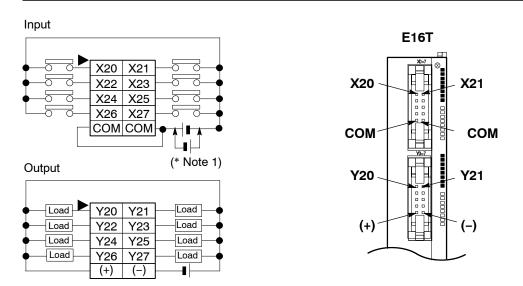
i Note

The output number given above is the output number when the expansion output unit is installed as the first expansion unit (*section 5.3).

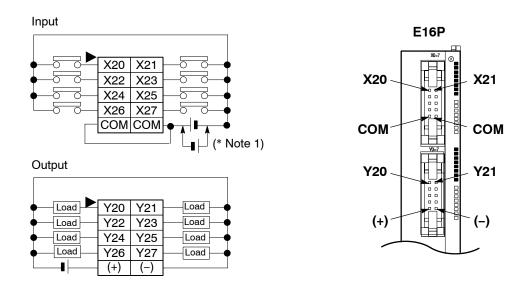
3.4 Pin Layouts


3.4.1 E8RS/E8RM

Notes

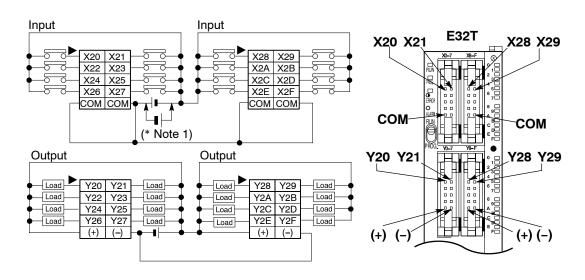

- Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).

3.4.2 E16RS/E16RM


- 🔊 Notes
- Either positive or negative polarity is possible for the input • voltage supply.
- The I/O number given above is the I/O number when the • expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).

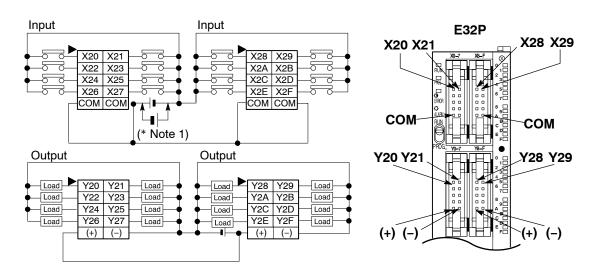
3.4.3 E16T

- The two COM terminals of input terminals are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).


3.4.4 E16P

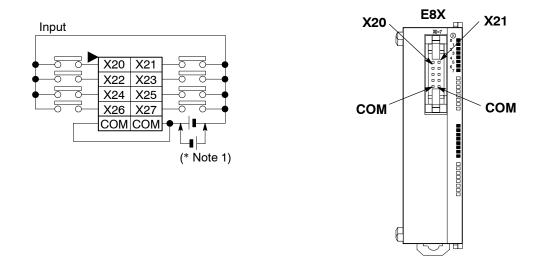
👦 Notes

- The two COM terminals of input terminals are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).


3.4.5 E32T

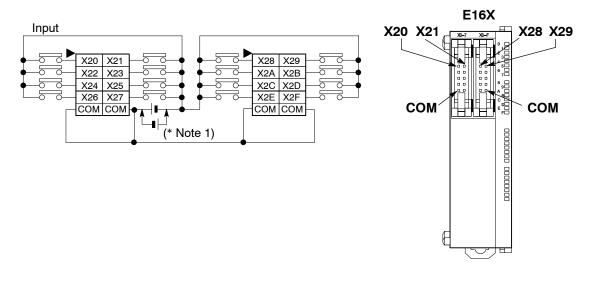
Notes

- The four COM terminals of input terminals are connected internally, however they should be externally connected as well.
- The two (+) terminals of output terminals are connected internally, however they should be externally connected as well.
- The two (-) terminals of the output terminals are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).


3.4.6 E32P

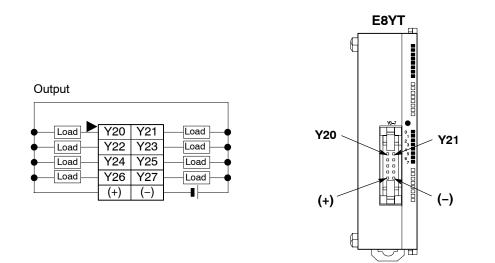
🔊 Notes

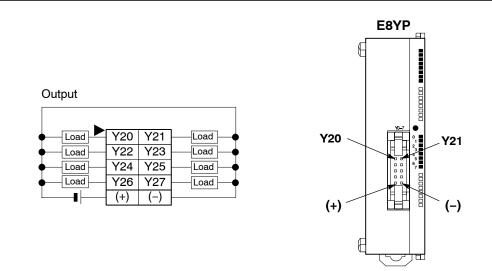
- The four COM terminals of input terminals are connected internally, however they should be externally connected as well.
- The two (+) terminals of output terminals are connected internally, however they should be externally connected as well.
- The two (-) terminals of the output terminals are internally connected, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The I/O number given above is the I/O number when the expansion I/O unit is installed as the first expansion unit. The I/O numbers for the expansion I/O units will differ depending on the location where they are installed (*section 5.3).


3.4.7 E8X

🔊 Notes

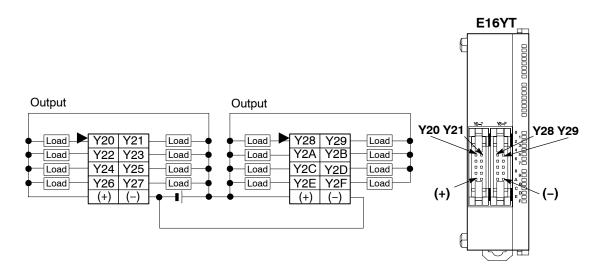
- The two COM terminals of input terminals are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The input number given above is the input number when the expansion input unit is installed as the first expansion unit. The input numbers for the expansion input units will differ depending on the location where they are installed (*section 5.3).


3.4.8 E16X


i Notes

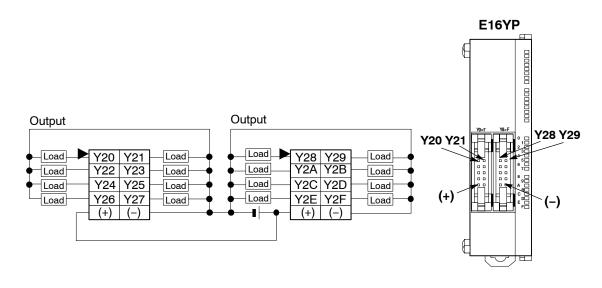
- The four COM terminals of input terminals are connected internally, however they should be externally connected as well.
- 1) Either positive or negative polarity is possible for the input voltage supply.
- The input number given above is the input number when the expansion input unit is installed as the first expansion unit. The input numbers for the expansion input units will differ depending on the location where they are installed (*section 5.3).

3.4.9 E8YT


3.4.10 E8YP

🔊 Note

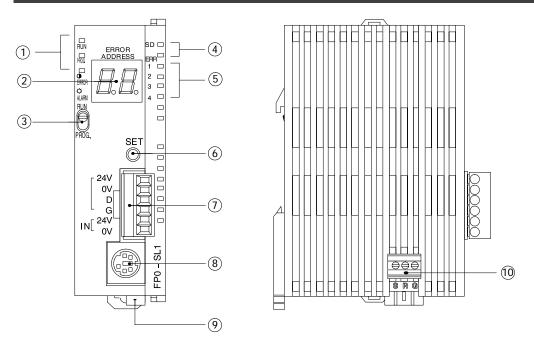
The output number given above is the output number when the expansion output unit is installed as the first expansion unit. The output numbers for the expansion output units will differ depending on the location where they are installed (*section 5.3).


3.4.11 E16YT

Notes

- The two (+) terminals of the output terminals are connected internally, however they should be externally connected as well.
- The two (-) terminals of the output terminals are connected internally, however they should be externally connected as well.
- The output number given above is the output number when the expansion output unit is installed as the first expansion unit. The output numbers for the expansion output units will differ depending on the location where they are installed (*section 5.3).

3.4.12 E16YP


- The two (+) terminals of the output terminals are connected internally, however they should be externally connected as well.
- The two (-) terminals of the output terminals are connected internally, however they should be externally connected as well.
- The output number given above is the output number when the expansion output unit is installed as the first expansion unit. The output numbers for the expansion output units will differ depending on the location where they are installed (*section 5.3).

FP0

S-LINK Control Unit

4.1	Names	and Functions
4.2	Specific	cations
	4.2.1	General Specifications
	4.2.2	S-LINK Controller Specifications
4.3	Wiring t	the Power Supply4 – 7
	4.3.1	Wiring to Power Supply Connector
	4.3.2	Wiring to S-LINK Terminal Block
4.4	Sequen	nce of Turning on Power Supplies
4.5	Operati	on When Power Supply is Turned On 4 – 10
4.6	S-LINK	System Address Recognition
	4.6.1	Recognizing the Address
	4.6.2	Address Setting of S-LINK I/O Device 4 - 12
4.7	Judging	g Errors from the Error Indicators
4.8	Judging	g Errors Address Displays 4 – 14

4.1 Names and Functions

1 Status indicator LED

The LED display the operation mode and error statuses.

(2) ERROR ADDRESS display (2-digit hexadecimal display) The address at which the S-LINK system error occurred is displayed.

③ Mode switch

The mode switch changes the operation mode.

④ Transmission indicator (SEND)

This flashes when input or output data is transmitted between the various units of the S–LINK system.

(5) ERROR indicators

These light if an error occurs in the S–LINK system. ERR1 (Error 1): Short circuit between D – G line. ERR2: Unused ERR3 (Error 3): Abnormal voltage level between D – G line. ERR4 (Error 4): Broken wire or S–LINK I/O device error

6 System SET button

Pressing the system SET button reads the connection status for the S–LINK system and stores it in the memory. In subsequent operation, the S–LINK unit checks for errors using the connection status registered at this time. The output unit data effective at the time that the system SET button was pressed is retained.

🖛 next page

⑦ S-LINK terminal block (6-pin)

The power supply and signal wires of the S–LINK system are connected to the S–LINK terminal block.

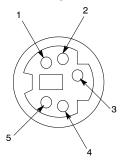
The S–LINK terminal block can be detached from the FP0 S–LINK control unit for wiring operations.

For detailed information, refer to section "4.3.2 Wiring to S-LINK Terminal Block."

8 Tool port (RS232C)

The tool port (RS232C) is used to connect a programming tool.

9 Power supply connector


Supply 24V DC to the power supply connector. It is connected using the power supply cable (AFP0581) that comes with the unit.

10 RS232C port

Use this port to connect to devices with an RS232C port, such as an I.O.P., a bar code reader, or an image checker, enabling data input and output.

Tool port (RS232C) specifications

Pin assignment

Pin no.	Pin no. Abbreviation	
1	_	
2	SD (TXD)	
3	SG	
4	RD (RXD)	
5	+ 5 V	

Settings when shipped from the factory

Default value	Baud rate: 9600bps
	Character bit: 8bits
	Parity check: Odd
	Stop bit: 1bit

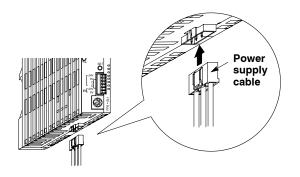
4.2 Specifications

4.2.1 General Specifications

Item	Description
Rated operating voltage	24V DC
Operating voltage range	21.6V to 26.4V DC
Rated current consumption	150mA or less
Allowed momentary power off time	10ms at 21.6V, 10ms at 24V
Ambient temperature	0°C to +55°C/32°F to +131°F
Storage temperature	-20°C to +70°C/-4°F to +158°F
Ambient humidity	30% to 85% RH (non-condensing)
Storage humidity	30% to 85% RH (non-condensing)
Breakdown voltage	500V AC for 1 minute between S-LINK terminal block and power supply/ ground terminals
Insulation resistance	min. 100M Ω (measured with a 500V DC megger) between S-LINK terminal block and power supply/ground terminals
Vibration resistance	10Hz to 55Hz, 1 cycle/min: double amplitude of 0.75mm/ 0.030in., 10 min on 3 axes
Shock resistance	Shock of 98m/s ² or more, 4 times on 3 axes
Noise immunity	1,000 Vp-p with pulse widths 50ns and $1\mu s$ (based on in-house measurements)
Operating condition	Free from corrosive gases and excessive dust

4.2.2 S–LINK Controller Specifications

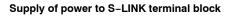
Item		Description		
Rated power supply voltage		24V DC +/-10% / Allowable ripple p - p +/-10% max. (Supplied from IN - 24V, IN - 0V of the S-LINK terminal block)		
Current con (* note 1)	sumption	[S-LINK controller current consumption (including D – G line current consumption)] 24V DC 1.6A max.		
		[Maximum current which can be supplied (supplied to S–LINK unit and I/O devices from 24V – 0V line)] + 24V DC 5A (fuse: 5A)		
Transmissio	on method	Bi-directional time-divided multiple signal transmission		
Synchroniz	ation method	Bit synchronization, frame synchronization		
Transmissio	on protocol	S-LINK protocol		
Transmissio	on speed	28.5kbps		
Transmissio	on delay time	Max. 10.7ms		
Transmissio	on distance	Main signal wire: up to a distance to 200m max. (400m when a booster is used)		
FAN-out (*	note 2)	320		
Connection (* note 3)	method	'T'-branch multi-drop wiring		
No. of input	/output points	64 points input/64 points output Fixed		
Display Transmission indicators display (SEND)		Green LED blinks in response to synchronization signals		
	Error indicator	Red LED light up depending on the error		
	Error address display	If the system error occurs, the error address is displayed using the red 7-segment LED.		

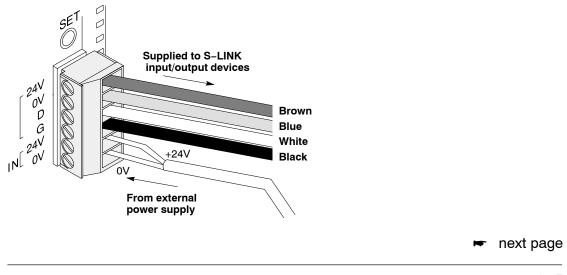

- 1) For detailed information on current consumption, refer to "Determining the Power Supply" in the "S-LINK Design Manual."
- 2) The output capacitance for the D-G line of the S-LINK controller and booster is indicated by FAN-out, and the input capacitance from the D-G line of the S-LINK configuration unit is indicated by FAN-in. When configuring the S-LINK system, the configuration should be set up so that the FAN-out total > or = the FAN-in total. (For detailed information on calculating the FAN-in value and other values, see the "S-LINK Design Manual."
- 3) The FP0 S–LINK control unit does not have a loop wiring function.

4.3 Wiring the Power Supply

With the FP0 S–LINK control unit, power must be supplied at two locations (power supply connector and S–LINK terminal block).

4.3.1 Wiring to Power Supply Connector


This is the power supply for the programmable controller section and the S–LINK controller in the S–LINK control unit (24V DC, 150mA).



4.3.2 Wiring to S-LINK Terminal Block

This is the power supply for the S–LINK controller in the S–LINK control unit and other S–LINK input/output devices to which power is supplied through the 24V – 0V line of the S–LINK main cable.

The current consumption for the overall S–LINK system is calculated by referring to the section entitled "Determining the Power Supply" in the "S–LINK Design Manual." (For standard purposes, a power supply exceeding 24V DC, 1.6 A should be selected.)

4.3 Wiring the Power Supply

FI	P0
----	----

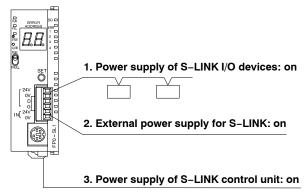
Terminal name	Color of connecting cable	Description
24V	Brown	Main wire (for S-LINK I/O devices)
0V	Blue	
D	White	
G	Black	
IN-24V	—	External power supply input for S-LINK
IN-0V	—	

S-LINK terminal block: MC1.5/6-ST-3.5 (Made by Phoenix Contact Co.)

Suitable wires (twisted wire)

Size	AWG#20 to 16
Normal cross-section surface area	0.5 to 1.25mm ²

R	Notes
11 - 188°	


- The S-LINK section is protected by a fuse, but if too many input/output devices are connected, or if the current consumption is heavy enough to cause the fuse to blow, we recommend providing a local power supply.
- A short-circuit between D-G, or between D-24V, triggers the protective circuit, but there is no protection against short-circuiting between G-24V or 0V-24V. Be aware that a short-circuit can cause a breakdown or malfunction.

4.4 Sequence of Turning on Power Supplies

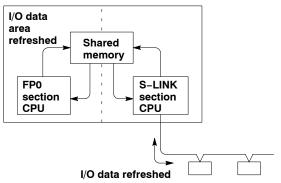
When turning on the power supplies to the S–LINK control unit, follow the sequence outlined below.

Procedure:

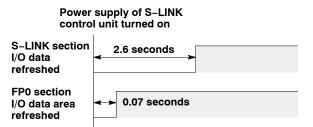
- 1. Turn on the power supply to the S-LINK I/O devices connected to the S-LINK system.
- 2. Turn on the external power supply to the S–LINK.
- 3. Last, turn on the power supply to the S-LINK control unit itself.

If using the power supply of booster, start up the booster before the external power supply for S–LINK.

When turning off the power supplies, reverse the order of the sequence noted above.


If the power supply of the S–LINK control unit has turned on while the external power supply for the S–LINK is not on, Error 46 (S–LINK communication error) occurs and the unit does not change to the RUN mode.

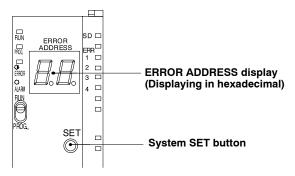
4.5 Operation When Power Supply is Turned On


Refreshing S-LINK I/O data

With the S–LINK control unit, I/O data is refreshed by the CPUs of both the FP0 section and the S–LINK section, through the memory shared between them.

S-LINK control unit

The illustration below shows the time required until the first refreshing is completed by the S–LINK control unit after the power supply has been turned on. (The external power supply for the S–LINK is already on.)


When the power supply to the S–LINK control unit is turned on, it takes approximately 2.6 seconds for the S–LINK I/O data to be verified by the FP0 section. Be particularly careful with regard to the FP0 sequence program, if using the S–LINK input at the b contact relay when the power supply is turned on.

4.6 S-LINK System Address Recognition

4.6.1 Recognizing the Address

Before the S–LINK system is being operated for the first time, turn on the power supply and then press the system SET button.

When the system SET button is pressed, the number of connected devices recognized by S–LINK control unit blinks on the error address display in hexadecimal.

If the actual number of connected devices differs from the number displayed, since an unrecognized S–LINK device exists, check for address overlapping, improper connection, etc..

Subsequently, an error check is carried out based on this status. When an address is recognized, that status is stored in the EEPROM, so it is not necessary to press the system SET button after that point (each time the power supply is turned on).

When the power supply is switched on for the first time after completing the S–LINK system wiring, an arbitrary error display may appear. This does not indicate any abnormal operation. If the system SET button is pressed, this display is erased.

If an error address is displayed during operation, confirm the address, and then turn off the power supply, correct the address at the location where the error occurred, and turn the power supply on again. Check to make sure the error address display has disappeared. (Do not press the system SET button in this case.)

If the system SET button is pressed after an error has occurred and before it is canceled, the error will be canceled. If the cause of the error has not been corrected at that point, however, be aware that the I/O device for that address will be skipped during any subsequent checks.

If the system SET button is pressed without recovery having been made, that status will be recognized for that address, and any locations where recovery has not been made will not be recognized.

4.6.2 Address Setting of S–LINK I/O Device

Addresses can be set freely, regardless of the position of the I/O device connected to the system, but problems in the wiring of the main cable, such as broken or disconnected wires, can be detected more easily if I/O devices closer to the S–LINK control unit are given smaller addresses, and addresses increase in sequential order for I/O devices which are farther away from the S–LINK control unit.

S-LINK control unit	10 20 30 40	Numeric values indicate the initial address for each I/O device.
	80 70 60 50)

Up to two I/O devices can be assigned the same address within the system for any individual S-LINK control unit. Do not set the same address for three or more I/O devices.

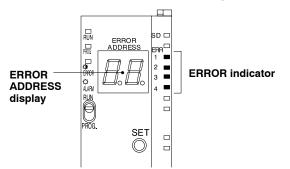
Up to seven boosters can be connected to one system for any individual S–LINK control unit, but the actual number which can be connected varies depending on the units configuring the system and the wiring length.

Note

The FP0 S–LINK control unit does not have a loop wiring function.

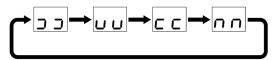
4.7 Judging Errors from the Error Indicators

If an error occurs in the S–LINK system, the ERROR indicator indicated in the table below lights, depending on the content of the error.

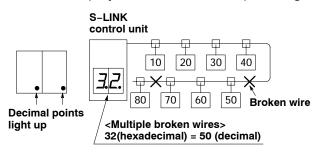

ERROR indicators				Description	Steps to take
ERR1	ERR2	ERR3	ERR4		
on	off	on	off	Short–circuit between D–G ☞ note 1	If the ERR1 or ERR3 indicator lights, output of the signal being transmitted stops, and none of the S-LINK devices connected to the sys- tem will operate. Also, if a short-circuit occurs at a location far away, there may be times when ERR1 does not light. Check the S-LINK signal/power line.
off	off	on	off	Error in level of signal being transmitted	There is a possibility that the wiring length, the configuration, or the number of configuration devices connected to the system exceeds the rated limit. Check the system configuration once again.
off	off	off	on	Address has been changed/ D or G line is broken or dis- connected/ Error in S-LINK unit for dis- played address 🖛 note 2	Check to see if the S–LINK signal/power line is broken or disconnected, or if the address is incorrect. In this case, transmission signals are being output, so the S–LINK input/output devices operate normally.

Notes

- 1) This ERROR indicator lights even if the external power supply to the S-LINK has not been turned on, but this does not indicate a breakdown in the S-LINK control unit itself. Check the external power supply to the S-LINK.
- 2) ERR4 is held, so to cancel it, one of the following is required: turn the power supply to the FP0 off and then on again, press the system SET button and enter the settings again, or turn the power supply on the S-LINK side off and then on again.


4.8 Judging Errors Address Displays

The transmission line is monitored at all times, and if an error occurs, the address at which the error occurred is displayed as a hexadecimal value.


During normal transmission:

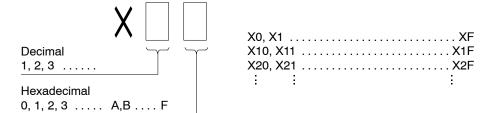
The "J J" shaped charactor rotates in the clockwise direction.

If an error occurs:

The address is displayed. In case faults occur at several locations, the smallest error address is displayed and the decimal points light up simultaneously.

Chapter 5

I/O Allocation


5.1	I/O Number
5.2	Control Unit
5.3	Expansion I/O Unit

5.1 I/O Number

Expression of numbers for input/output relays

Since input relay (X) and output relay (Y) are handled in units of 16 points, they are expressed as a combination of decimal and hexadecimal numbers as shown below.

<Example> External input relay (X)

Specifying X and Y numbers

On the FP0, the same numbers are used for input and output. Example: The same number "X20 and Y20" can be used for input and output

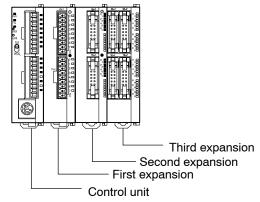
5.2 Control Unit

The I/O allocation of the FP0 control unit is fixed.

Туре		I/O number
C10RS, C10CRS, C10RM, C10CRM	Input: 6 points	X0 to X5
	Output: 4 points	Y0 to Y3
C14RS, C14CRS, C14RM, C14CRM	Input: 8 points	X0 to X7
	Output: 6 points	Y0 to Y5
C16T, C16CT, C16P, C16CP	Input: 8 points	X0 to X7
	Output: 8 points	Y0 to Y7
C32T, C32CT, C32P, C32CP , T32CT, T32CP	Input: 16 points	X0 to XF
	Output: 16 points	Y0 to YF

S-LINK Control Unit

The I/O allocation of the S-LINK control unit is fixed.


Unit	FP0 I/O	S-LINK address
Input: 64 points	X80 to X8F	0 to 15
	X90 to X9F	16 to 31
	X100 to X10F	32 to 47
	X110 to X11F	48 to 63
Output: 64 points	Y80 to Y8F	64 to 79
	Y90 to Y9F	80 to 95
	Y100 to Y10F	96 to 111
	Y110 to Y11F	112 to 127

5.3 Expansion I/O Unit

Up to three expansion I/O units can be added.

I/O numbers do not need to be set as I/O allocation is performed automatically by the FP0 control unit when an expansion I/O unit is added.

The I/O allocation of expansion I/O unit is determined by the installation location.

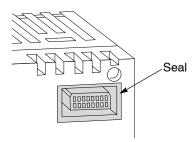
		I/O number		
Туре		First expansion	Second expansion	Third expansion
E8RS/E8RM	Input: 4 points	X20 to X23	X40 to X43	X60 to X63
	Output: 4 points	Y20 to Y23	Y40 to Y43	Y60 to Y63
E8X	Input: 8 points	X20 to X27	X40 to X47	X60 to X67
E8YT/E8YP	Output: 8 points	Y20 to Y27	Y40 to Y47	Y60 to Y67
E16RS/E16RM/	Input: 8 points	X20 to X27	X40 to X47	X60 to X67
E16T/E16P	Output: 8 points	Y20 to Y27	Y40 to Y47	Y60 to Y67
E16X	Input: 16 points	X20 to X2F	X40 to X4F	X60 to X6F
E16YT/E16YP	Output: 16 points	Y20 to Y2F	Y40 to Y4F	Y60 to Y6F
E32T/E32P	Input: 16 points	X20 to X2F	X40 to X4F	X60 to X6F
	Output: 16 points	Y20 to Y2F	Y40 to Y4F	Y60 to Y6F
A21	Input channel 0: 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
	Input channel 1: 16 points	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)
	Output: 16 points	WY2 (Y20 to Y2F)	WY4 (Y40 to Y4F)	WY6 (Y60 to Y6F)
A80, TC4, TC8	Input CH0, 2, 4, 6: 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
	Input CH1, 3, 5, 7: 16 points	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)
A04V, A04I	Input: 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
	Output CH0, 2: 16 points	WY2 (Y20 to Y2F)	WY4 (Y40 to Y4F)	WY6 (Y60 to Y6F)
	Output CH1, 3: 16 points	WY3 (Y30 to Y3F)	WY5 (Y50 to Y5F)	WY7 (Y70 to Y7F)
IOL	Input: 32 points	X20 to X3F	X40 to X5F	X60 to X7F
	Output: 32 points	Y20 to Y3F	Y40 to Y5F	Y60 to Y7F
RTD6	Input CH0, 2, 4: 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
	Input CH1, 3, 5: 16 points	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)
	Output: 16 points	WY2 (Y20 to Y2F)	WY4 (Y40 to Y4F)	WY6 (Y60 to Y6F)

 The channel data of FP0-A80, TC4, TC8, A04V and A04I will switch and be read or written by a user program that contains the conversion data switch flag.

- Please verify with the manual for the FP0 CC-Link Slave unit.

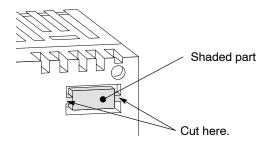
5.3 Expansion I/O Unit

Installation


6.1	Adding Expansion Units
6.2	Important Notes
6.3	Attachment to DIN Rails 6 – 8
6.4	Installation Using FP0 Slim Type Mounting Plate 6 – 9
6.5	Installation Using FP0 Flat Type Mounting Plate 6 – 10

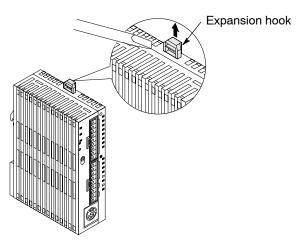
Installation

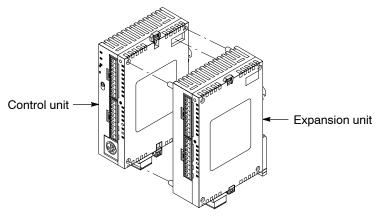
6.1 Adding Expansion Units


Expansion method

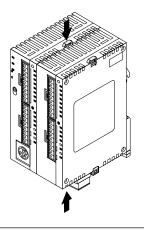
1. Peel the seal on the side of the unit so that the internal connector is exposed.

🔊 Notes


• When peeling the seal on the side of the initial lot products, the shaded part is exposed. Cut off the shaded part with a pair of nippers or similar tool so that the internal connector is exposed.


• When removing the shaded part, use a sharp cutting object, making sure that the shaded part is removed leaving a smooth surface. Note that failure to remove the shaded part completely can result in damage to the connector.

🖛 next page


2. Raise the expansion hooks on the top and bottom sides of the unit with a screwdriver.

3. Align the pins and holes in the four corners of the control unit and expansion unit, and insert the pins into the holes so that there is no gap between the units.

4. Press down the expansion hooks raised in step 2 to secure the unit.

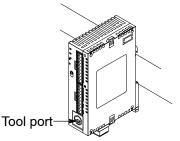
6.2 Important Notes

Please, read the following notes carefully before the installation of your FP0.

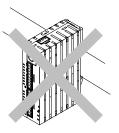
Notes

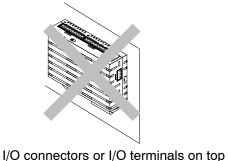
Operating environment

(Use the unit within the range of the general specifications when installing)

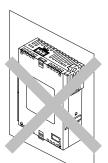

- Ambient temperatures:0 to +55°C
- Ambient humidity: 30% to 85% RH (at 25°C, non-condensing)
- For use in pollution Degree 2 environment.
- Do not use it in the following environments.
 - Direct sunlight
 - Sudden temperature changes causing condensation.
 - Inflammable or corrosive gas.
 - E-xcessive airborne dust, metal particles or saline matter.
 - Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as mmonia or caustic soda.
 - Direct vibration, shock or direct drop of water.
 - Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters, or any other equipment that would generate high switching surges. (Min.100mm or less)

Static electricity

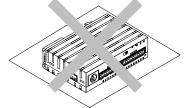

- Before touching the unit, always touch a grounded piece of metal in order to discharge static electricity.
- In dry locations, excessive static electricity can cause problems.


🖛 next page

- Measures regarding heat discharge
 - Always install the unit orientated with the tool port facing outward on the bottom in order to prevent the generation of heat.

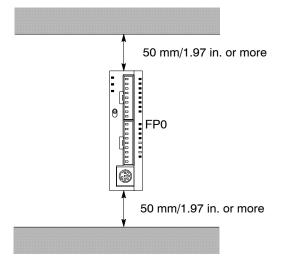


- Do not install the FP0 control unit as shown below.

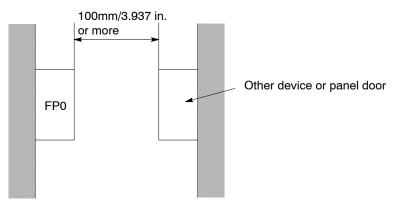


Upside-down

Installation which blocks the air duct


Installations such that the I/O connectors or I/O terminals face down

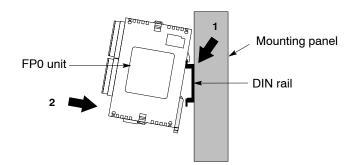
Horizontal installation of the unit


- Do not install the unit above devices which generate heat such as heaters, transformers or large scale resistors.

next page

- Installation space
 - Leave at least 50 mm/1.97 in. of space between the wiring ducts of the unit and other devices to allow heat radiation and unit replacement.

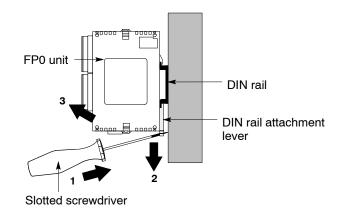
 Maintain a minimum of 100 mm/3.937 in. between devices to avoid adverse affects from noise and heat when installing a device or panel door to the front of the FP0 unit.


 Keep the first 100 mm/3.937 in. from the front surface of the FP0 control unit open in order to allow room for programming tool connections and wiring.

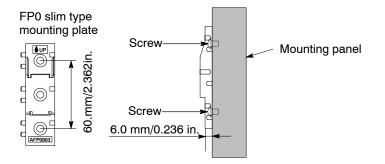
6.3 Attachment to DIN Rails

The FP0 unit enables one-touch attachment to DIN rails.

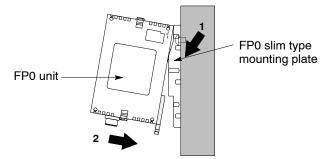
Procedure:


- 1. Fit the upper hook of the FP0 unit onto the DIN rail.
- 2. Without moving the upper hook, press on the lower hook to fit the FP0 unit into position.

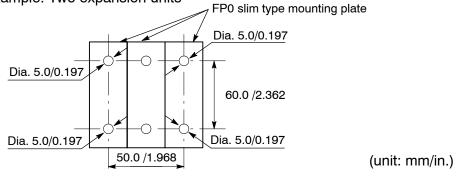
You can easily remove the FP0 unit as described below.


Procedure:

- 1. Insert a slotted screwdriver into the DIN rail attachment lever.
- 2. Pull the attachment lever downwards.
- 3. Lift up the FP0 unit and remove it from the rail.

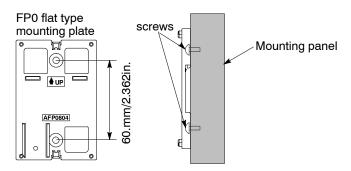

6.4 Installation Using FP0 Slim Type Mounting Plate

Use M4 size pan-head screws for attachment of FP0 slim type mounting plate (AFP0803) to mounting panel. For a diagram showing detailed dimensions of the FP0 slim type mounting plate, see *section 13.4.

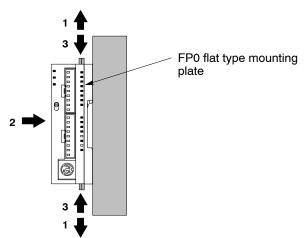

Procedure:

- 1. Fit the upper hook of the FP0 unit onto the FP0 slim type mounting plate.
- 2. Without moving the upper hook, press on the lower hook to fit the FP0 unit into position.

When using an expansion unit, tighten the screws after joining all of the FP0 slim type mounting plate to be connected. Tighten the screws at each of the four corners.


Example: Two expansion units

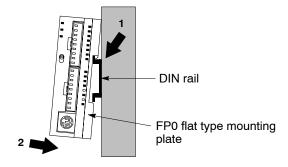
6.5 Installation Using FP0 Flat Type Mounting Plate


Use M4 size pan-head screws for attachment of FP0 flat type mounting plate (AFP0804) and install according to the dimensions shown below.

For a diagram showing detailed dimensions of the FP0 flat type mounting plate, see *section 13.5.

Procedure:

- 1. Raise the expansion hooks on the top and bottom of the unit.
- 2. Install the FP0 unit on the FP0 flat type mounting plate.
- 3. Align the expansion hooks with the plate and press the hooks back down.



Protes

• The FP0 flat type mounting plate (AFP0804) cannot be used for an expansion unit.

next page

• An FP0 unit with an attached FP0 flat type mounting plate can also be installed sideways on a DIN rail.

6.5 Installation Using FP0 Flat Type Mounting Plate

Wiring

7.1	Safety	Instructions7-3
	7.1.1	Interlock Circuit
	7.1.2	Emergency Stop Circuit
	7.1.3	Start Up Sequence7 – 3
	7.1.4	Momentary Power Failures
	7.1.5	Protecting Power Supply and Output Sections
7.2	Wiring	the Power Supply to the Control Unit
7.3	Ground	ling
7.4	Input V	Viring
	7.4.1	Sensors
	7.4.2	LED-Equipped Reed Switch
	7.4.3	Two-Wire Type Sensor 7 – 10
	7.4.4	LED-Equipped Limit Switch
7.5	Output	Wiring 7 – 12
	7.5.1	Protective Circuit for Inductive Loads 7 – 12
	7.5.2	Precautions for Using Capacitive Loads 7 – 13
7.6	Wiring	the Terminal Type 7 – 14
7.7	Wiring	the MOLEX Connector Type 7 – 16
7.8	Wiring	the MIL Connector Type 7 – 18
	7.8.1	Contact Puller Pin for Rewiring 7 – 19
7.9	Wiring	the RS232C Port

Wiring

7.1 Safety Instructions

In certain applications, malfunction may occur for the following reasons:

- Power ON timing differences between the FP0 control unit and I/O or motorized devices
- An operation time lag when a momentary power drop occurs
- Abnormality in the FP0 unit, power supply circuit, or other devices

In order to prevent a malfunction resulting in system shutdown choose the adequate safety circuits or other safety measures listed in the following:

7.1.1 Interlock Circuit

When a motor clockwise/counter-clockwise operation is controlled, provide an interlock circuit that prevents clockwise and counter-clockwise signals from inputting into the motor at the same time.

7.1.2 Emergency Stop Circuit

Add an emergency stop circuit to controlled devices in order to prevent a system shutdown or an irreparable accident when malfunction occurs.

7.1.3 Start Up Sequence

The FP0 should be operated after all of the outside devices are energized. To keep this sequence, the following measures are recommended:

- Set the mode switch from PROG. mode to RUN mode after power is supplied to all of the outside devices
- Program the FP0 so as to disregard the inputs and outputs until the outside devices are energized

Note

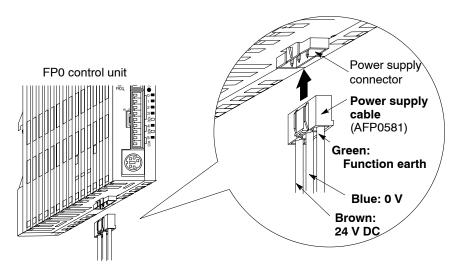
When stopping the operation of FP0 also, have the I/O devices turned OFF after the FP0 has stopped operating.

🖛 next page

7.1.4 Momentary Power Failures

If the duration of the power failure is less than 5 ms, the FP0 continues to operate. If the power is OFF for 5 ms or longer, operation changes depending on the combination of units, the power supply voltage, and other factors. (In some cases, operation may be the same as that for a power supply reset.)

If operation is to be continued following recovery from the momentary power failure, use an automatic retaining sequence program that uses a hold type internal relay.

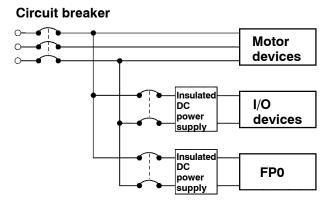

7.1.5 Protecting Power Supply and Output Sections

An insulated power supply with an internal protective circuit should be used. The power supply for the control unit operation is a non-insulated circuit, so if an incorrect voltage is directly applied, the internal circuit may be damaged or destroyed. If using a power supply without a protective circuit, power should be supplied through a protective element such as a fuse.

If current exceeding the rated control capacity is being supplied in the form of a motor lock current or a coil shorting in an electromagnetic device, a protective element such as a fuse should be attached externally.

7.2 Wiring the Power Supply to the Control Unit

Use the power supply cable (AFP0581) that comes with the unit to connect the power supply.


Item	Descriptions
Rated voltage	24 V DC
Operating voltage range	21.6 to 26.4 V DC

🔊 Notes

- To minimize adverse effects from noise, twist the brown and blue wires of the power supply cable.
- To protect the system against erroneous voltage from the power supply line, use an insulated power supply with an internal protective circuit.
- The regulator on the FP0 unit is a non-insulated type.
- If using a power supply device without an internal protective circuit, always make sure power is supplied to the unit through a protective element such as a fuse.

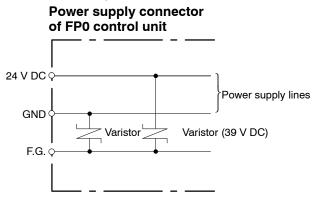
next page

• Isolate the wiring systems to the FP0, input/output devices, and motor devices.

- The power supply sequence should be set up so that power to the control unit is turned OFF before the input/output power supplies.
- If the input/output power supplies are turned OFF before the power to the control unit, the FP0 control unit may detect a drop in the input level, and malfunction.
- Be sure to supply power to a control unit and an expansion unit from the same power supply, and turn the power ON and OFF simultaneously for both.

7.3 Grounding

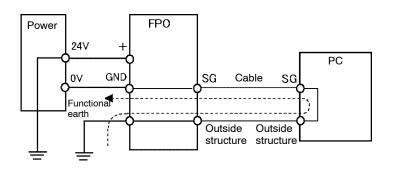
Under normal conditions, the inherent noise resistance is sufficient. However, in situations of excess noise, ground the instrument to increase noise suppression.


For grounding purposes, use wiring with a **minimum of 2 mm²**. The grounding connection should have a resistance of **less than 100** Ω .

Notes

- The point of grounding should be as close to the FP0 control unit as possible. The ground wire should be as short as possible.
- If two devices share a single ground point, it may produce an adverse effect. Always use an exclusive ground for each device.
- Depending on the surroundings in which the equipment is used, grounding may cause problems.
 <Example>

Since the power supply line (24 VDC and GND terminal) of the FP0 power supply connector is connected to the frame ground (F.G.) through a varistor, if there is an irregular potential between the power supply line (24 VDC and GND) and earth, the varistor may be shorted.

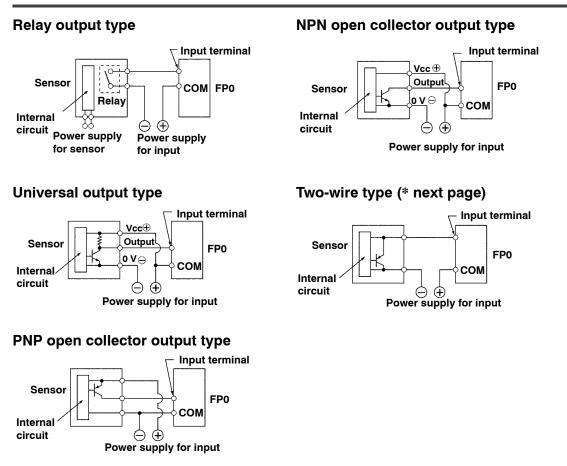


7.3 Grounding

When the plus side is grounded, do not ground the functional earth terminal.

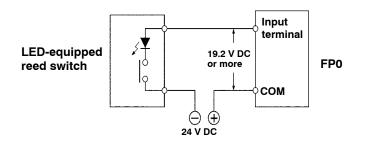
Do not ground the FP0 functional earth terminal if the plus terminal of the power supply is grounded.

Depending on the PC, some types have the SG terminal of the RS232C port connected to the outside structure of the connector. Also, the outside structure of the FP0 tool port is connected to the functional earth terminal. For this reason, connecting a PC will connect the FP0 GND terminal to the functional earth terminal. In particular, because a voltage of -24 V will be applied to the GND terminal when the plus terminal is grounded, a potentially damaging short circuit will occur when, in this state, the GND terminal and functional earth are connected.

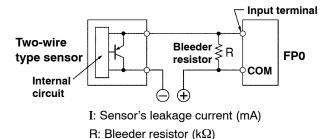

7.4 Input Wiring

Notes

- Be sure to select the thickness (dia.) of the input wires while taking into consideration the required current capacity.
- Arrange the wiring so that the input and output wiring are separated, and so that the input wiring is separated from the power wiring, as much as possible. Do not route them through the same duct or wrap them up together.
- Separate the input wires from the power and high voltage wires by at least 100 mm/3.937 in.


In this section you find some examples for wiring sensors, an LED-equipped reed switch, a two-wire type sensor and a LED-equipped limit switch.

7.4.1 Sensors


7.4.2 LED-Equipped Reed Switch

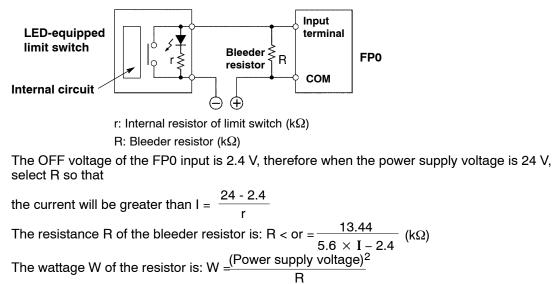
When a LED is connected to an input contact such as LED-equipped reed switch, make sure that the ON voltage applied to the FP0 input circuit is greater than 19.2 V DC. In particular, take care when connecting a number of switches in series.

7.4.3 Two-Wire Type Sensor

If the input of the FP0 does not turn OFF because of leakage current from the two-wire type sensor, the use of a bleeder resistor is recommended, as shown below.

The OFF voltage of the FP0 input is 2.4 V, therefore, select an R value so that the voltage between the COM terminal and the input terminal will be less than 2.4 V. (The impedance of the FP0 input terminal is $5.6 \text{ k}\Omega$.)

The resistance R of the bleeder resistor is: R < or = $\frac{13.44}{5.6 \times I - 2.4}$ (k Ω)


The wattage W of the resistor is:

$$W = \frac{(Power supply voltage)^2}{B}$$

In the actual selection, use a value that is 3 to 5 times the value of W.

7.4.4 LED-Equipped Limit Switch

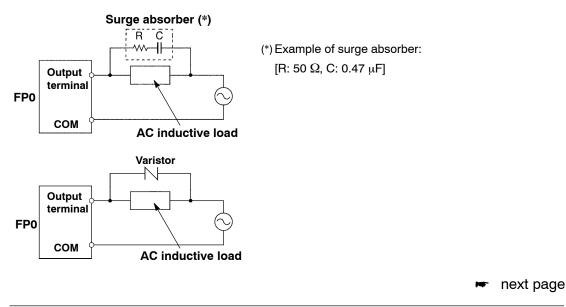
If the input of the FP0 does not turn OFF because of the leakage current from the LED-equipped limit switch, the use of a bleeder resistor is recommended, as shown below.

In the actual selection, use a value that is 3 to 5 times the value of W.

7.5 Output Wiring

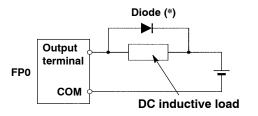
i Notes

- There is no fuse protection built into the output circuit. Therefore, in order to protect against overheating of the output circuitry caused by possible short circuits, install an external fuse at each point. However, in cases such as short circuits, the control unit itself may not be protected.
- Be sure to select the thickness (dia.) of the output wires while taking into consideration the required current capacity.
- Arrange the wiring so that the input and output wiring are separated, and so that the output wiring is separated from the power wiring, as much as possible. Do not route them through the same duct or wrap them up together.
- Separate the output wires from the power and high voltage wires by at least 100 mm/3.937 in.


Protect the outputs as described below:

7.5.1 Protective Circuit for Inductive Loads

With an inductive load, a protective circuit should be installed in parallel with the load.


When switching DC inductive loads with FP0 relay output type, be sure to connect a diode across the ends of the load.

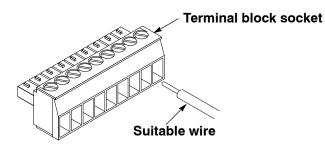
When using an AC inductive load

7.5 Output Wiring

When using a DC inductive load

(*) Diode:

Reverse voltage (V_R): 3 times the load voltage Average rectified forward current (I₀): Load current or more


7.5.2 Precautions for Using Capacitive Loads

When connecting loads with large in-rush currents, to minimize their effect, connect a protection circuit as shown below.

7.6 Wiring the Terminal Type

A screw-down connection type terminal block socket for terminal of FP0 control unit and analog I/O unit is used. The terminal block socket and suitable wires are given below.

Terminal block socket

Item	Description	
Manufacturer	Phoenix Contact Co.	
Model	MC1,5/9-ST-3,5	
Product number	1840434	

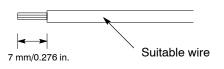
Suitable wires (twisted wire)

Item	Description
Control unit Size: AWG #24 to 16	
	Conductor cross-sectional area: 0.3 to 1.25 mm ²
Analog I/O unit Size: AWG #28 to 16	
	Conductor cross-sectional area: 0.08 to 1.25 mm ²

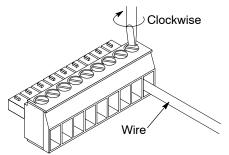
Pole terminal with a compatible insulation sleeve

If a pole terminal is being used, the following models are marketed by Phoenix Contact Co.

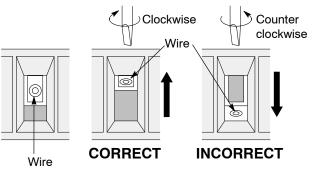
Manufacturer	Cross-sectional area (mm ²)	Size	Product number
Phoenix Contact Co.	0.25	AWG #24	AI 0,25–6YE
	0.50	AWG #20	AI 0,5–6WH
	0.75	AWG #18	AI 0,75–6GY
	1.00	AWG #18	AI 1–6RD


Pressure welding tool for pole terminals

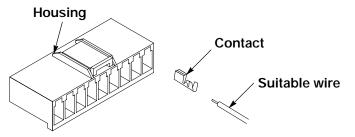
Manufacturer	Phoenix Contact Co.	
Туре	CRIMPFOX UD6	
Product number	12 04 43 6	


When tightening the terminals of the terminal block socket, use a screwdriver (Phoenix Contact Co., Product no. 1205037) with a blade size of 0.4 \times 2.5. The tightening torque should be 0.22 to 0.25 N·m (2.3 to 2.5 kgf·cm) or less.

Procedure:


1. Remove a portion of the wire's insulation.

2. Insert the wire into the terminal block socket until it contacts the back of the block socket, and then tighten the screw clockwise to fix the wire in place.



- When removing the wire's insulation, be careful not to scratch the core wire.
- Do not twist the wires to connect them.
- Do not solder the wires to connect them. The solder may break due to vibration.
- After wiring, make sure stress is not applied to the wire.
- In the terminal block socket construction, if the wire closes upon counter-clockwise rotation, the connection is faulty. Disconnect the wire, check the terminal hole, and then re-connect the wire.

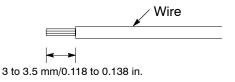
7.7 Wiring the MOLEX Connector Type

The housings and contacts listed below come supplied with the FP0. Use the wires given below. Also, use the required special tool for connecting the wires.

Supplied connector

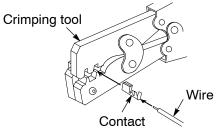
Manufacturer	Item	Product number
Molex Co., Ltd.	Housing	51067-0900 (2 pieces)
	Contact	50217-8100 (20 pieces)

Suitable wires (twisted wire)

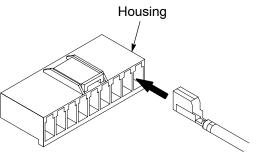

- Size: AWG #24 to 18
- Conductor cross-sectional area: 0.2 to 0.75 mm²
- Insulation outside diameter: dia. 1.4 to dia. 3.0

Special crimping tool

- Manufacturer: Molex Japan Co., Ltd
- Product number: 57189-5000


Procedure:

1. Remove a portion of the wire's insulation.



🖛 next page

2. Place the contact in the crimping tool, place the wire in the contact and lightly squeeze the tool.

3. Insert the crimped wire into the housing until it contacts the back side.

🔊 Note

When removing a wire, use a flat-head screwdriver, or other similar tool, to pull up the hold-down pin of the housing and then pull out the wire.

7.8 Wiring the MIL Connector Type

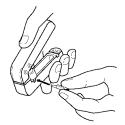
The housings, semi-cover and pressure welders listed below come supplied with the FP0. Use the wires given below. Also, use the required pressure connection tools for connecting the wires.

Supplied connector

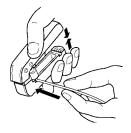
Manufacturer	Item
Panasonic Electric Works SUNX Co., Ltd.	Housing (10P)
	Semi-cover (10P)
	Contact (5 pin)

Suitable wires (twisted wire)

Size	Conductor cross-sectional area	Insulation thickness	Rated current
AWG#22	0.3 mm ²	alia d Tha alia d d	
AWG#24	0.2 mm ²	dia. 1.5 to dia. 1.1	3A

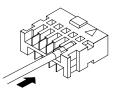

Pressure connection tool

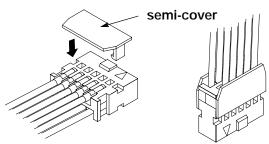
- Order number: AXY52000FP


Procedure:

The wire end can be directly crimped without removing the wire's insulation, saving labor.

1. Bend the welder (contact) back from the carrier, and set it in the pressure connection tool.

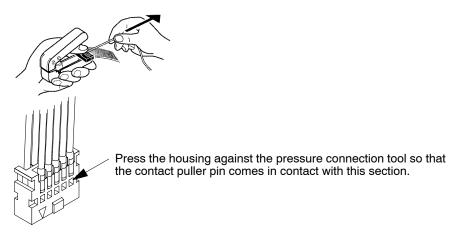

2. Insert the wire without removing its insulation until it stops, and lightly grip the tool.


next page

FP0

3. After press-fitting the wire, insert it into the housing.

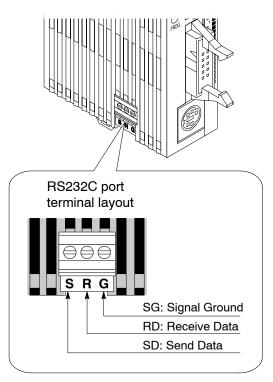
4. When all wires has been inserted, fit the semi-cover into place.



Note

If using a MIL connector for flat cables, please specify the order number AFP0808.

7.8.1 Contact Puller Pin for Rewiring


If there is a wiring mistake or the cable is incorrectly pressure-connected, the contact puller pin provided with the fitting can be used to remove the contact.

7.9 Wiring the RS232C Port

When using the RS232C port, use the screw-down connection type terminal and the wire according to the following procedures.

FP0 Control unit with RS232C port (FP0 C10CRM/C10CRS/C14CRM/C14CRS/C16CT/C16CP/C32CT/C32CP)

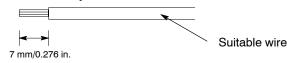
Item	Specification
Baud rate	300/600/1200/2400/4800/ 9600/19200 bps
Transmission distance	3m/9.84 ft.
Terminal block	Made by Phoenix Contact Co. (3-pin) Product number: MKDS 1/3-3.5
Communication method	half-duplex

Settings when shipped from the factory

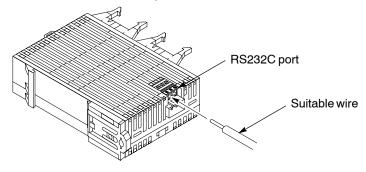
These are changed using system registers 412 to 414. The settings in effect when the unit is shipped from the factory are noted below.

412	RS232C port is not used.
413	Character bit: 8 bits Parity check: odd Stop bit: 1 bit Header: without STX code Terminator: CR
414	Baud rate: 9600 bps

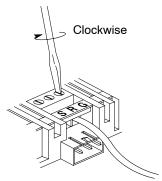
Suitable wires (twisted wire)


- Size: AWG #28 to 16
- Conductor cross-sectional area: 0.08 to 1.25 mm²

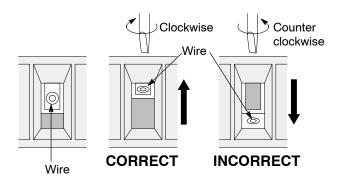
Use a shielded wire of the above wiring. We recommend grounding the shield section. Also, if using a pole terminal, see * section 7.6.


When tightening the RS232C port, use a screwdriver (Phoenix Contact Co., Product no. 1205037) with a blade size of 0.4 \times 2.5. The tightening torque should be 0.22 to 0.25 N·m (2.3 to 2.5 kgf·cm) or less.

Procedure:


1. Remove a portion of the wire's insulation.

2. Insert wire into the RS232C port until it contacts the back of the RS232C port.



3. Tighten the screw clockwise to fix the wire in place.

🔊 Notes

- When removing the wire's insulation, be careful not to scratch the core wire.
- Do not twist the wires to connect them.
- Do not solder the wires to connect them. The solder may break due to vibration.
- After wiring, make sure stress is not applied to the wire.
- In the RS232C port terminal construction, if the wire closes upon counter-clockwise rotation, the connection is faulty. Disconnect the wire, check the terminal hole, and then re-connect the wire.

Precautions During Programming

8.1	Use of l	Duplicated Output
	8.1.1	Duplicated Output8 – 3
	8.1.2	When Output is Repeated with an OT, KP, SET, or RST Instruction
<i>8.2</i>	Handlin	g BCD Data
	8.2.1	BCD Data8 - 5
	8.2.2	Handling BCD Data in the PLC
8.3	Handlin	g Index Registers 8 – 7
	8.3.1	Index Registers8 – 7
	8.3.2	Memory Areas Which can be Modified with Index Registers
	8.3.3	Example of Using an Index Register8 – 8
8.4	Operati	on Errors 8 – 10
	8.4.1	Outline of Operation Errors 8 – 10
	8.4.2	Operation Mode When an Operation Error Occurs
	8.4.3	Dealing with Operation Errors
	8.4.4	Points to Check in Program 8 – 12
8.5	Instruct	ion of Leading Edge Detection Method 8 – 13
	8.5.1	Instructions of Leading Edge Detection Method
	8.5.2	<i>Operation and Precautions at Run Start</i> <i>Time 8 – 14</i>

next page

0.C. Pressutions for Pressuring	8 – 18
8.6 Precautions for Programming	
8.7 Rewrite Function During RUN	8 – 19
8.7.1 Operation of Rewrite During RUN	8 – 19
8.7.2 Cases Where Rewriting During Run is not Possible	8 – 20
8.7.3 Procedures and Operation of Rewrite During RUN	8 - 21
8.7.4 Changing Modes in FP Programmer II	8 - 22
8.8 Changing the Set Value of Timer/Counter During RUN	8 – 23
8.8.1 Method of Rewriting Constant in FP Programmer II	8 – 23
8.8.2 Method of Rewriting a Value in the Set Value Area	8 <i>–</i> 24
8.9 Processing During Forced Input and Output	8 – 27
8.10 Setting the Clock/Calendar Timer (T32CT type only)	8 – 28

8.1 Use of Duplicated Output

8.1 Use of Duplicated Output

8.1.1 Duplicated Output

Duplicated output refers to repeatedly specifying the same output in a program.

If the same output is specified for the "**OT**" and "**KP**" instructions, it is considered to be duplicated output.

Even if the same output is used for multiple instructions, such as the **SET** or **RST** instruction, or high-level instruction for data transfer, it is not regarded as duplicated output.

If you enter RUN mode while the duplicated output condition exists, under normal conditions, it will be flagged as an error, the ERROR/ALARM LED will light and the self-diagnostic error flag R9000 will go on.

How to Check for Duplicated Use

You can check for duplicated outputs in the program using the programming tool, by the following method:

Using FP Programmer II:

Operate the TOTAL CHECK function.

Key operation:	(-) OP		9		ENT		READ
----------------	-----------	--	---	--	-----	--	------

If there are any duplicated outputs, an error message (DUP USE) and the address will be displayed.

Using FPWIN GR software:

Execute the "Debug" on "Totally Check Program."

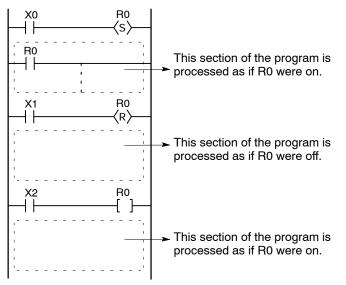
If there are any duplicated outputs, an error message (DUPLICATED OUTPUT ERROR) and the address will be displayed. If you execute "SEARCH AN ERROR," the error message will be displayed, and the first address number will be displayed.

Enabling Duplicated Output

If you need to use output repeatedly due to the content of the program, duplicated output can be enabled.

In this case, change the setting of system register 20 to "enable" (when using FP Programmer II, set K1).

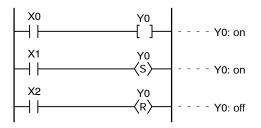
When this is done, an error will not occur when the program is executed.


8.1 Use of Duplicated Output

8.1.2 When Output is Repeated with an OT, KP, SET, or RST Instruction

Condition of Internal and Output Relays During Operation

When instructions are repeatedly used which output to internal and output relays such as transfer instructions and **OT**, **KP**, **SET** and **RST** instructions, the contents are rewritten at each step during operation.

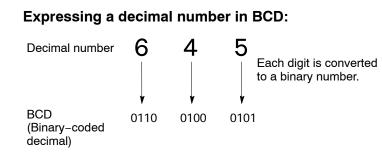

Example: Processing when SET, RST and OT instructions are used (X0 to X2 are all on).

The output is determined by the final operation results

If the same output is used by several instructions such as the **OT**, **KP**, **SET**, **RST**, or data transfer instructions, the output obtained at the I/O update is determined by the results of the operation at the greatest program address.

Example: Output to the same output relay Y0 with OT, SET and RST instructions.

When X0 to X2 are all on, Y0 is output as off at I/O update.

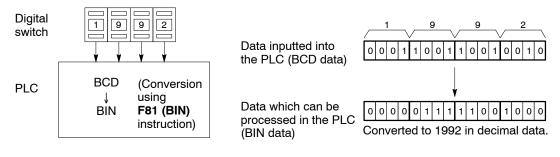

If you need to output a result while processing is still in progress, use a partial I/O update instruction "F143 (IORF)".

8.2 Handling BCD Data

8.2.1 BCD Data

BCD is an acronym for binary-coded decimal, and means that each digit of a decimal number is expressed as a binary number.

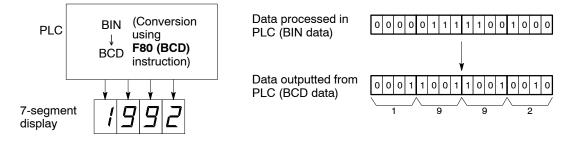
Example:


8.2.2 Handling BCD Data in the PLC

When inputting data from a digital switch to the PLC or outputting data to a 7-segment display (with a decoder), the data must be in BCD form. In this case, use a data conversion instruction as shown in the examples at below.

BCD arithmetic instructions "F40 (B+) to F58 (DB-1)" also exist which allow direct operation on BCD data, however, it is normally most convenient to use BIN operation instructions "F20 (+) to F38(D-1)" as operation in the PLC takes place in binary.

Input From a Digital Switch


Use the BCD-to-BIN conversion instruction "F81 (BIN)".

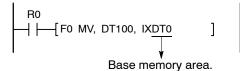
8.2 Handling BCD Data

Output to a 7-segment Display (with Decoder)

Use the BIN-to-BCD conversion instruction "F80 (BCD)".

8.3 Handling Index Registers

8.3 Handling Index Registers


8.3.1 Index Registers

Like other registers, index registers have two points, IX and IY, for reading and writing 16-bit data.

Use an index register to indirectly specify a memory area number. (This is also called index modification.)

Example:

Transferring the contents of data register DT100 to the number specified by the contents of an index register.

In this example, the number of the destination data register varies depending on the contents of IX with DT0 acting as a base. For example, when IX contains K10 the destination will be DT10, and when IX is K20, the destination will be DT20.

In this way, index registers allow the specification of multiple memory areas with a single instruction, and thus index registers are very convenient when handling large amounts of data.

8.3.2 Memory Areas Which can be Modified with Index Registers

Index registers can be used to modify other types of memory areas in addition to data registers DT.

IXWX0, IXWY1, IXWR0, IXSV0, IXEV2, IXDT100

Constants can also be modified. IXK10, IXH1001

An index register cannot modify another index register. IXIX, IXIY

When using index modification with an instruction which handles 32-bit data, specify with IX. In this case, IX and IY are handled together as 32-bit data.

Higher 16-bit area Lower 16-bit area

Contents of IY Contents of IX

8.3 Handling Index Registers

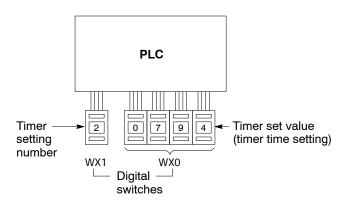
8.3.3 Example of Using an Index Register

Repeatedly Reading in External Data

Example:

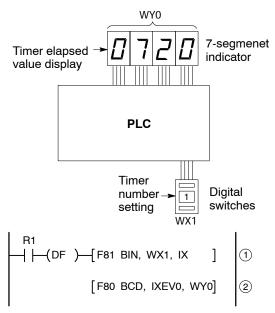
Writing the contents of word external input relay WX3 to a sequence of data registers beginning from DT0.

R0 → F0 MV, K0, IX] ① R1 → (DF)→[F0 MV, WX3, IXDT0] ② [F35 +1, IX] ③


- ① When R0 turns on, K0 is written to index register IX.
- (2) When the R1 turns on, the contents of WX3 is transferred to the data register specified by IXDT0.
- **3** Add 1 to IX.

In this case, the contents of IX will change successively, and the destination data register will be as follows.

Input times of R1	Contents of IX	Destination data register
1st	0	DT0
2nd	1	DT1
3rd	2	DT2
:	:	:


Inputting and Outputting Data Based on a Number Specified by an Input

Example 1: Setting a timer number specified by a digital switch

8.3 Handling Index Registers

- ① Convert the BCD timer number data in WX1 to binary and set it in index register IX.
- ② Convert the BCD timer set value in WX0 to binary and stored in the timer set value area SV specified by contents of IX.
- Example 2: External output of the elapsed value in a timer number specified by a digital switch

- 1 Convert the BCD timer number data in WX1 to binary, and set it in index register IX.
- ② Convert the elapsed value data EV in the timer specified by IX to BCD, and output it to word external output relay WY0.

8.4 Operation Errors

8.4 Operation Errors

8.4.1 Outline of Operation Errors

An operation error is a condition in which operation is impossible when a high-level instruction is executed.

When an operation error occurs, the ERROR/ALARM LED on the FP0 control unit will blink and the operation error flags (R9007 and R9008) will turn on.

The operation error code "E45" is set at special data register DT9000.

The error address is stored in special data registers DT9017 and DT9018.

Types of Operation Error

Address error

The memory address (number) specified by index modification is outside the area which can be used

BCD data error

Operation is attempted on non–BCD data when an instruction handling BCD is executed, or BCD conversion is attempted on data which is not within the possible conversion range.

Parameter error

In an instruction requiring the specification of control data, the specified data is outside the possible range.

Over area error

The data manipulated by a block instruction exceeds the memory range.

8.4.2 Operation Mode When an Operation Error Occurs

Normally, the operation stops when an operation error occurs.

However, when you set system register 26 to "continuation" (KI), the FP0 control unit operates even if an operation error occurs.

8.4.3 Dealing with Operation Errors

Procedure:

FP0

1. Check the location of the error.

Check the address where the error occurred, which is stored in DT9017 and DT9018, and make sure the high-level instruction for that address is correct and appropriate.

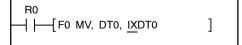
2. Clear the error.

Use a programming tool to clear the error. (If the mode selector is set to RUN, RUN will resume as soon as the error is cleared.)

In FP Programmer II, press the following keys.

ACLR (-) OP	1	1	2	ENT	(DELT) INST
\square					

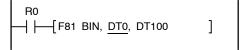
An error can be cleared by turning the power off and on in PROG. mode, however, the contents of the operation memory except the hold type data will be cleared.


An error can also be cleared by executing a F148 (self-diagnostic error set) instruction.

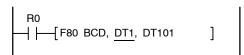
8.4 Operation Errors

8.4.4 Points to Check in Program

Check if an extraordinarily large value or negative value was stored in the index register.


Example: When a data register is modified using an index register

In this case, index register (IX) modifies the address of data register DT0. If data in IX is larger than the last address of the data register, an operation error will occur. If the PLC you are using is of the FP0 16-point type, the last address of the data register is DT1659. If the data in IX exceeds the range of K0 to K255, an operation error will occur. The same is true when the contents of IX are negative.


Is there any data which cannot be converted using BCD ↔ BIN data conversion?

Example: When BCD-to-BIN conversion is attempted

In this case, if DT0 contains a hexadecimal number with one of the digits A through F such as 12A4, conversion will be impossible and an operation error will result.

Example: When BIN-to-BCD conversion is attempted

In this case, if DT1 contains a negative value or a value greater than K9999, an operation error will occur.

Check if the divisor of a division instruction is K0.

```
Example:
```

In this case, if the content of DT100 is K0, an operation error will occur.

8.5 Instruction of Leading Edge Detection Method

8.5.1 Instructions of Leading Edge Detection Method

Instructions Using the Leading Edge Detection Operation

DF (leading edge differential) instructions Count input for CT instructions Count input for F118 (UDC) instructions Shift input for SR instructions Shift input for F119 (LRSR) instructions NSTP instructions

Leading Edge Detection Method

An instruction with a leading edge detection method operates only in the scan where its trigger (execution condition) is detected switching from off to on.

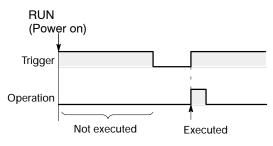
Standard operation			Leading edge differential operation			
Trigger	on off		Trigger	on off		
Operation of	on off		Operation of	on off		
instruction		Executed every scan	instruction		Executed only one time	

The condition of the previous execution and the condition of the current execution are compared, and the instruction is executed only if the previous condition was off and the current condition is on. In any other case, the instruction is not executed.

Precautions When Using an Instruction Which Performs Leading Edge Detection

When RUN begins, for example when the system is powered on, the off \rightarrow on change of the execution condition (trigger) is not detected. The instruction is not executed. Execution of the instruction will take place as explained on section 8.5.2.

When used with one of the instructions indicated in instructions below which change the order of execution of instructions, the operation of the instruction may change depending on input timing. Take care regarding this point.

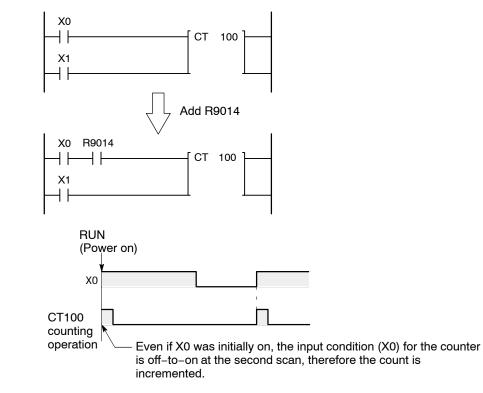

Be careful when using leading edge detection type instructions with control instructions, such as:

MC and MCE instructions JP and LBL instructions LOOP and LBL instructions CNDE instruction Step ladder instructions Subroutine instructions

8.5.2 Operation and Precautions at Run Start Time

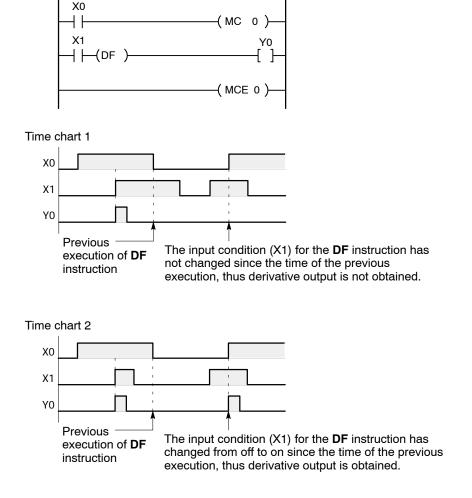
Operation of first scan after RUN begins

The leading edge detection instruction is not executed when the mode has been switched to the RUN mode, or when the power supply is booted in the RUN mode, if the trigger (execution condition) is already on.


If you need to execute an instruction when the trigger (execution condition) is on prior to switching to RUN mode, use R9014 (initial pulse off relay) in your program on the following page. (R9014 is a special internal relay which is off during the first scan and turns on at the second scan.)

Example 1: DF (leading edge differential) instruction

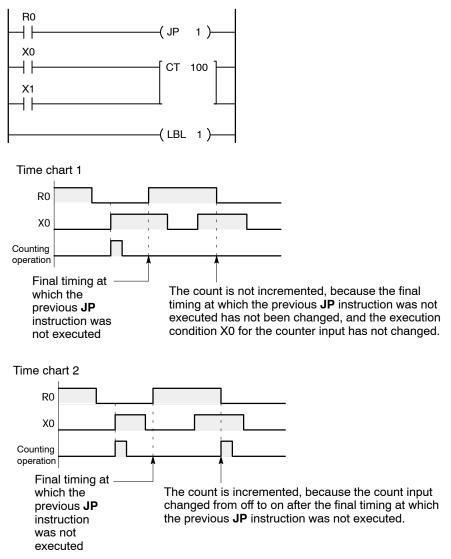
Even if X0 was initially on, the input condition (X0) for the **DF** instruction is off-to-on at the second scan, therefore derivative output is obtained.



8.5.3 Precautions When Using a Control Instruction

Instructions which leading edge detection compare the condition of the previous execution and the condition of the current execution, and execute the instruction only if the previous condition was off and the current condition is on. In any other case, the instruction is not executed.

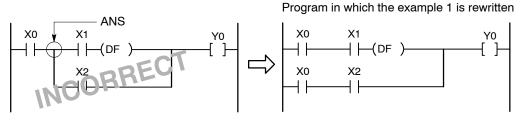
When a leading edge detection instruction is used with an instruction which changes the order of instruction execution such as **MC**, **MCE**, **JP** or **LBL**, the operation of the instruction may change as follows depending on input timing. Take care regarding this point.


Example 1:

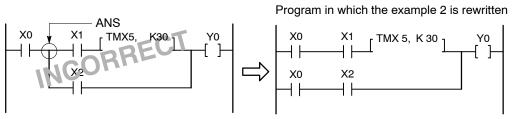
Using the DF instruction between MC and MCE instructions

Example 2:

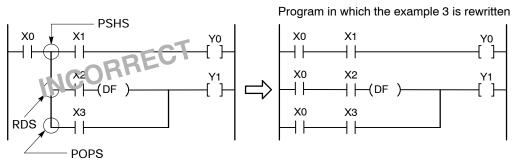
Using the CT instruction between JP and LBL instructions



8.6 Precautions for Programming


Programs which do not execute correctly

Do not write the following programs as they will not execute correctly.


Program example 1:

Program example 2:

Program example 3:

When a combination of contacts are set as the trigger (execution condition) of a differential instruction (**DF**) or timer instruction, do not use an AND stack (**ANS**) instruction, read stack (**RDS**) instruction, or pop stack (**POPS**) instruction.

8.7 Rewrite Function During RUN

8.7 Rewrite Function During RUN

8.7.1 Operation of Rewrite During RUN

How Operation of Rewrite During RUN

The FP0 allows program rewriting even in RUN mode. When a rewrite is attempted during RUN, the tool service time is temporarily extended, program rewriting is performed, and operation is resumed without the need to change the mode. For this reason, the time of the scan during the RUN rewrite extends from several msec to several hundreds of msec.

Operation During Rewrite

External output (Y) is held.

External output (X) is ignored.

The timer (T) stops the clock.

Rise and fall changes in the inputs of differential instructions (**DF**), counter instructions (**CT**), and left/right shift registers [**F119 (LRSR**)] are ignored.

Interrupt functions are stopped.

Internal clock relays (special internal relays) are also stopped.

Pulse output is stopped during the rewrite.

Set Values for Timer/Counter Instructions

All set values specified with decimal constants (K) in timer and counter instructions are preset in the corresponding set value areas (SV). Values in the elapsed value area (EV) do not change.

Operation of Rewrite During RUN Completed Flag

The rewrite during RUN completed flag (R9034) is a special internal relay that goes on for only the first scan following the completion of rewriting in the RUN mode. It can be used instead of the initial pulse relay following a change in the program. (Supported in CPU Ver. 2.0 and subsequent versions)

8.7.2 Cases Where Rewriting During Run is not Possible

When the timeout error message is indicated:

Even if the timeout error message is indicated, it is highly possible that the program in PLC has been already rewritten. Carry out the following operations.

FPWIN G	R
8	Timeout error while changing program in PLC. Program may differ from PLC.
	Please click below Help button to find the way how to solve it.
	<u> </u>

1. When ladder symbol mode

As a ladder editing is left, set it to the offline edit mode. Complete the program conversion in the tool software, and then change to the online edit mode to check.

2. When boolean mode

A ladder editing is cleared.

Set it to the offline edit mode and carry out the editing operation again. After the operation, change to the online edit mode to check.

When the timeout error occurs using the through mode in GT series programmable display.

Extend the timeout time of the programmable display using the GTWIN. (The default setting is 5 seconds.)

	COM1 -	-	
Baud rate:]	<u>C</u> ancel
saud rate:	115200 👱	bps	Initialize
Data length 7 bits	© 8 bits		
Stop bit	C 2 bits		e automatically:
Parity		Data Length:	
C Non	📀 Odd	C Even	C 0

Select "Transfer" from "File" in the menu bar. The "transfer data" screen will open. Select "Condition" to open "Communication Setting" screen. Change the value for "Timeout".Click "OK" button to complete the change of setting.

Instructions which do not allow rewriting during RUN

Step ladder instructions (SSTP/STPE) Subroutine instructions (SUB/RET) Interrupt instructions (INT/IRET) Control instructions (ED/LBL) (LBL instructions allow insertion and writing, but not deletion and clearing.)

Instructions which do not allow rewriting to subprograms

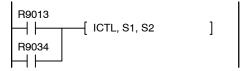
The following instructions do not allow rewriting during subroutines or interrupt programs.

Jump/label instructions (**JP/LBL**) Loop/label instructions (**LOOP/LBL**) Master control relay/master control relay end instructions (**MC/MCE**)

Cases where rewriting is not possible during RUN

When a syntax error has occurred. During forced input/output operation

Interrupt Restrictions


When using interrupt, high-speed counter, pulse output or PWM output functions, do not perform a rewrite during RUN.

If a rewrite during RUN is executed, the following problems may occur. Exercise caution.

Interrupt programs will be disabled. Enable by executing an **ICTL** instruction once again.

Example: Using R9034 (rewrite during RUN completed flag)

The high-speed counter will continue to count.

At 2.5 kHz or higher during one-phase, one channel counting or 1.25 Hz or higher during one-phase, two channel counting, miscounts may occur.

Target value match on/off instructions (F166/F167) will continue.

Coincidence programs will be disabled.

Pulse output and PWM output will be stopped. The **F168** instruction (positioning control) will continue to operate.

However, when the maximum output frequency is higher than 2.5 kHz during one-phase, one channel counting or 1.25 Hz during one-phase, two channel counting, the output pulse number may differ from the set number.

8.7.3 Procedures and Operation of Rewrite During RUN

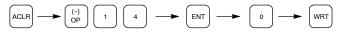
Item		FPWIN GR Ladder symbol mode	FPWIN GR Boolean mode	FP Programmer II	
Rewrite proce	dure	Maximum of 128 steps. Changes are performed by block. When PG conversion is ex- ecuted online, the program will be rewritten. Block a	Rewriting performed by step. Caution is required as rewriting takes place simulta neously with the change. In the case of FP Programmer II, the mode must b changed. (See section 8.7.4.)		
Operation of each instruction	ОТ/КР	If an instruction written in block a is deleted in block b, the condition before the re- write will be held.	If an instruction written in b, the condition before the Y contact relays which are status. To turn them off in forced output.	e on will be held in the on	
	ТМ/СТ	If an instruction written in block a is deleted in block b, the condition before the re- write will be held. Set values specified by K constants in TM/CT instruc- tions are preset in all of the corresponding SV's in the program. (Elapsed values EV do not change.)	b, the condition before the Set values specified by K	constants in TM/CT in- of the corresponding SV's values EV do not change.) mer II, set values can be without affecting the timer.	
	High-level instructions	If an instruction written in block a is deleted in block b, the condition before the re- write will be held.	If deleted, the output men	nory area will be held.	
	MC/MCE	When writing MC/MCE in- structions, be sure to write the instructions as a pair.	Writing or deleting a single not possible. Write or dele FPWIN GR ladder symbo		
	CALL/SUB/ RET	A subroutine is a program appearing between SUB n and RET instructions. Be sure to write it to an address which follows the ED in- struction.	Write in the order: RET , S Delete in the order: CALL	,	
	INT/IRET	An interrupt program is a program appearing between INT n and IRET instructions. Be sure to write it to an ad- dress which follows the ED instruction.	Write in the order: IRET , INT Delete in the order: INT , IRET		

next page

Item		FPWIN GR Ladder symbol mode	FPWIN GR Boolean mode	FP Programmer II
Operation of each instruc- tion	SSTP/STPE	A distance with the same number cannot be defined twice. An SSTP instruction cannot be written in a subprogram.	Writing and deletion of a s possible for a program wit Write or delete both instru FPWIN GR ladder symbo In the case of an SSTP in deletion of a single instruc gram with a step ladder a	th no step ladder area. Inctions simultaneously in I mode. struction only, writing and tion is possible for a pro-
	JP/LOOP/LBL	Be sure to write the instruc- tion for setting the loop number before LBL-LOOP instructions.	Write in the order: JP-LBL Delete in the order: LBL-J	

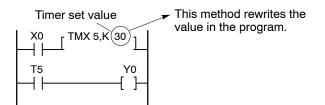
8.7.4 Changing Modes in FP Programmer II

Changing program modes


FP Programmer II is normally in PROG–EDIT mode which does not allow unintentional rewriting of programs. To perform a rewrite during RUN, the mode must be changed to RUN–EDIT mode.

Change the mode as shown below. After the rewrite, change back to PROG-EDIT mode to prevent accidental rewriting.

Procedure for changing to RUN-EDIT mode


 $\left(ACLR \longrightarrow \begin{pmatrix} (-) \\ OP \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \longrightarrow \begin{pmatrix} ENT \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \end{pmatrix} \end{pmatrix} WRT \right)$

Procedure for changing to PROG-EDIT mode

8.8 Changing the Set Value of Timer/Counter During RUN

8.8.1 Method of Rewriting Constant in FP Programmer II

Rewrite Method Using FP Programmer II

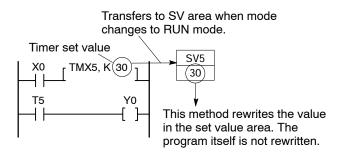
Example of changing the set value of timer 5 from K30 to K50

Procedure:

1. Read the address containing the timer instruction.

2. Clear the constant (K30).

3. Enter the new constant (K50).


Operation and Cautions After the Change

After the change, the timer or counter in operation will continue to run. Operation based on the changed set value will be started the next time the execution condition changes from off to on.

When this method is used, the program itself will change. Thus, when the mode is changed and then set back to RUN or when the power is turned on, the changed set value will be preset.

8.8 Changing the Set Value of Timer/Counter During RUN

8.8.2 Method of Rewriting a Value in the Set Value Area

Changing values in the set value area SV

Values in the set value area SV can be changed with the following procedures.

- Method using the programming tool software (FPWIN GR)
- Method using the FP Programmer II
- Method using the program (high-level instruction)

Operation and cautions after the change

After the change, the timer or counter in operation will continue to run. Operation based on the changed set value will be started the next time the execution condition changes from off to on.

With these methods, the value in the set value area SV will change, however, the program itself will not change. Therefore, when the mode is changed and then set back to RUN or when the power is turned on, operation will take place as follows:

When a set value in the program is specified by a constant K

The constant K is preset in the set value area SV. After the change, it will no longer be effective.

When a set value in the program is specified by a set value area number

In the case of a non-hold type timer or counter, 0 is preset in the set value area SV. In the case of a hold type timer or counter, the value changed by the method on the following page is preset in the set value area SV.

8.8 Changing the Set Value of Timer/Counter During RUN

Method 1: Method using the programming tool software

Procedure:

Select "Monitoring Registers" from the Online menu.

P0 2.7K 1 / 0 Online PLC = REMOTE PR	OG Monitor stopping Home	
I Vrused Z Vrused Vrused	۲	\$, th

Explanation of each column

(1) Displays the line number.

(2) Displays the device code and device number.

(3) Displays the monitored data.

During online monitoring, you can make changes to the data by either pressing [Enter] in this column or by double clicking.

(4) Displays the base (decimal, hexadecimal, binary or ASCII) and the number of words.

(5) Displays the I/O comment for each register.

You can input I/O comments for each register by either pressing [Enter] in this column or by double clicking.

Click in each column and change the settings. For details, please refer to the FPWIN GR help menu.

The "FPWIN GR" tool software has a similar menu. For information on operating the menus, please check the Help menu.

Method 2: Method using the FP Programmer II

Use the word data monitor function to read the set value area SV of the timer or counter to be changed, and rewrite the value.

Example of changing the value of SV0 from K30 to K50.

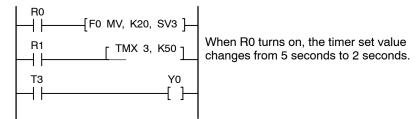
Procedure:

1. Execute word data monitor (OP8).

2. Read SV0.

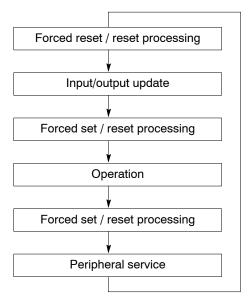
3. Clear SV0.

4. Write the new changing value.



Method 3: Method using the program (high-level instruction)

To change a set value of timer/counter based on an input condition, use a high-level instruction as shown below to rewrite the value in the set value area SV of the desired timer or counter.


Example: Changing the set value to K20 when input R0 turns on

8.9 Processing During Forced Input and Output

8.9 Processing During Forced Input and Output

Processing when forced input/output is initiated during RUN

Processing of external input (X)

Regardless of the state of the input from the input device, forced on/off operation will take precedence at a contact specified for forced input/output. At this time, the input LED will not blink, however, the area of input X in the operation memory will be rewritten. Contacts not specified will read in the on/off state according to the condition of the input from the input device.

Processing of external output (Y)

Regardless of the result of operation, forced on/off will take precedence at a contact specified for forced input/output. At this time, the area of output Y in the operation memory will be forcedly rewritten. External output will take place according to the input/output update timing in the above diagram.

The on/off state of contacts not specified will be determined by the operation result.

Timer (T) and Counter (C)

Regardless of the timer/counter input condition, forced on/off operation will take precedence at a contact specified for forced input/output. At this time, the contact of the timer (T) or counter (C) in the operation memory will be rewritten. Timing and counting will not take place during control.

The on/off state of contacts not specified will be determined by the operation result.

8.10 Setting the Clock/Calendar (T32CT type only)

Ckock/Calendar setting area

The write area and read area for clock/calendar is allocated to special data registers DT90053 to DT90057.

Special data register number	Upper byte	Lower byte	Read	Write
DT90053	Hour data H00 to H23	Minute data H00 to H59	Available	Not Available
DT90054	Minute data H00 to H59	Second data H00 to H59	Available	Available
DT90055	Day data H01 to H31	Hour data H00 to H23	Available	Available
DT90056	Year data H00 to H99	Month data H01 to H12	Available	Available
DT90057		Day of week data H00 to H06	Available	Available

Clock/Calendar setting

There are three ways to set the clock/calendar, as follows.

- When using the Windows version of FPWIN

- 1. While online, open the setting menu by selecting [Tool] and then [Set PLC Date and Time].
- 2. Enter the "Date" and "Time" and press [OK].

- When using DOS version software

- 1. While online, select [Monitor] and then [Data monitor].
- 2. Select [Save data] (f6) and then save data registers DT90054 to DT90057.
- 3. Select [Write ON] (f4) and [Data write] (f7) in that order and then write a value.

8.10 Setting the Clock/Calendar (T32CT type only)

- Setting and changing using a program

- 1. Transfer the value to be written into special data registers DT90054 to DT90057 that are allocated in clock/calendar setting area.
- 2. Write H8000 to DT90058.

Note: Execute the transfer using "P" type (derivative execution) instruction or transfer in the order of H8000 to H0000.

Example: With X0 on, adjust to the 5th day, 12:00:00.

Caution regarding backup of clock/calendar data

- Clock/Calendar values are backed up in the secondary battery.
- Do not use until the secondary battery has been sufficiently charged.
- When first used no value has been determined; therefore, please write values using a programming tool or similar.

High-speed Counter/Pulse Output/ PWM Output

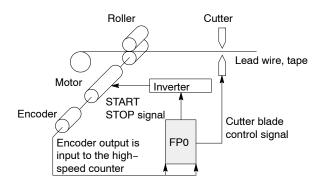
9.1	Outline	of Functions
	9.1.1	Three Functions that Use Built–in High–speed Counter
	9.1.2	Performance of Built–in High–speed Counter9 – 4
9.2	Specific	cations and Restricted Items
	9.2.1	Specifications
	9.2.2	Functions and Restrictions
9.3	High–s	peed Counter Function9 – 9
	9.3.1	Outline of High-speed Counter Function 9 – 9
	9.3.2	Types of Input Modes9 – 9
	9.3.3	I/O Allocation
	9.3.4	Instructions Used with High–speed Counter Function
	9.3.5	Sample Program 9 – 14
9.4	Pulse C	Dutput Function
	9.4.1	Outline of Pulse Output Function
	9.4.2	Control Mode 9 – 19
	9.4.3	I/O Allocation and Wiring
	9.4.4	Instructions Used with Pulse Output Function
	9.4.5	Sample Program for Positioning Control 9 – 25
		🖛 next page

9.5

9.5.1

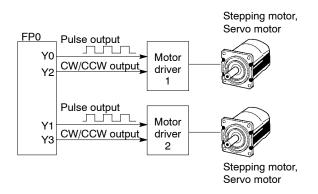
9.5.2	Instruction Used with PWM Output				
	Function	9 - 33			

9.1 Outline of Functions


9.1.1 Three Functions that Use Built-in High-speed Counter

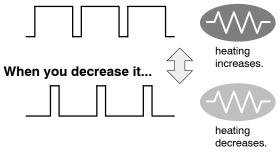
Functions that use the built-in high-speed counter

There are three functions available when using the high-speed counter built into the FP0.


High-speed counter function

The high-speed counter function counts external inputs such as those from sensors or encoders. When the count reaches the target value, this function turns on/off the desired output.

Pulse output function


Combined with a commercially available motor driver, the pulse output function enables positioning control. With the appropriate instruction, you can perform trapezoidal control, home return, and JOG operation.

PWM output function

By using the appropriate instruction, the PWM output function enables a pulse output of the desired duty ratio.

When you increase the pulse width...

9.1.2 Performance of Built-in High-speed Counter

Channel number

There are four channels for the built-in high-speed counter.

The channel number allocated for the high-speed counter will change depending on the function being used.

Counting range

K-8388608 to K8388607 (HFF8000 to H7FFFF) (Coded 24-bit binary)

Specifications and Restricted Items 9.2

Specifications 9.2.1

Input/output contact number being used			Built-in high-	Memory	area usec	I	Performations	Related instruc-		
On/off output	Count mode	mode contact	I channel	flag valu	Elapsed value area		Minimum input pulse	Maximur counting		tions
		paren-	(value in paren– thesis is reset	no.		ulou	urcu	width	Using only 1 chan- nel	Using mul- tiple chan- nels
Spec- ify the de-	Incre- mental input, Decre-	X0 (X2)	CH0	R903A	DT9044, DT9045/ DT90044, DT90045	DT9046, DT9047/ DT90046, DT90047	50 μs	Max. 10 kHz Max. Max. 10 kHz Max. 10 kHz	z 4 CH F1 (DM with F166 max. (HC1S)	F0 (MV), F1 (DMV), F166 (HC1S), F167
sired menta output input from Y0 to Y7	input	V4	CH1	R903B	DT9048, DT9049/ DT90048, DT90049	DT9050, DT9051/ DT90050, DT90051			(HC1R)	
	X3 (X5) X4 (X5)		CH2	R903C	DT9104, DT9105/ DT90104, DT90105	DT9106, DT9107/ DT90106, DT90107	100 μs	Max. 5 kHz		
			СНЗ	R903D	DT9108, DT9109/ DT90108, DT90109	DT9110, DT9111/ DT90110, DT90111		Max. 5 kHz		
Spec- ify the de- sired output	2-phas e input, Incre- mental/ decre- mental	X0 X1 (X2)	CH0	R903A	DT9044, DT9045/ DT90044, DT90045	DT9046, DT9047/ DT90046, DT90047	250 μs	Max. 2 kHz	Total of 2 CH with max. 2 kHz	
from Y0 to Y7	input, Direc- tional distinc- tion	X3 X4 (X5)	CH2	R903C	DT9104, DT9105/ DT90104, DT90105	DT9106, DT9107/ DT90106, DT90107	500 μs	Max. 1 kHz		

Table of high-speed counter function specifications

Reset input X2 can be set to either CH0 or CH1. Reset input X5 can be set to either CH2 or CH3.

9.2 Specifications and Restricted Items

Table of pulse output function specifications

Input/output contact number being used				Built–in high–	Memory	area used		Performance specifications	Related instruc-
Pulse output	Direc- tional out- put	Home input	Near home input	speed counter channel no.	Con- trol flag	Elapsed value area	Target value area	for maximum output fre- quency	tions
YO	Y2	XO	DT9052/ DT90052 <bit2></bit2>	CH0	R903A	DT9044, DT9045/ DT90044, DT90045	DT9046, DT9047/ DT90046, DT90047	10 kHz for 1-point output Max. 5 kHz for 2-point output	F0 (MV), F1 (DMV), F168 (SPD1), E160 (PLS)
¥1	Y3	X1	DT9052/ DT90052 <bit6></bit6>	CH1	R903B	DT9048, DT9049/ DT90048, DT90049	DT9050, DT9051/ DT90050, DT90051		F169 (PLS)

🔊 Note

The maximum 1–point output for instruction F168 (SPD1) is 9.5 kHz.

Table of PWM output specifications

Output number being used	Built–in high–speed counter channel no.	Memory area used	Performance specifications for output frequency	Related instructions
		Control flag		
YO	CH0	R903A	Frequency: 0.15 Hz to 38 Hz (CPU ver. 2.0 or later: 100 to 1 kHz) Duty: 0.1 % to 99.9 %	F170 (PWM)
Y1	CH1	R903B		

9.2.2 Functions and Restrictions

Channel

The same channel cannot be used by more than one function.

Example of prohibited application:

You cannot share CH0 with the high-speed counter and pulse output functions.

I/O number (input/output contact point)

The number allocated to each function cannot be used for normal input or outputs.

Example of prohibited application

When using CH0 for 2-phase inputting with the high-speed counter function, you cannot allot X0 and X1 to normal inputs.

When using Y0 for the pulse output function, you cannot allot origin input X0 to a normal input.

When using Y0 for the pulse output (with directional output operating) function, you cannot allot Y2 (directional output) to a normal input or output.

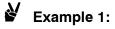
When using the high–speed counter with a mode that does not use the reset input, you can allot the inputs listed in parenthesis in the specifications table to a normal input.

Example of allowable application

When using the high-speed counter with no reset input and 2-phase input, you can allot X2 to a normal input.

Restrictions on the execution of related instructions (F166 to F170)

When any of the instructions related to the high-speed counter (**F166** to **F170**) are executed, the control flag (special internal relay: R903A to R903D) corresponding to the used channel turns on.


When the flag for a channel turns on, another instruction cannot be executed using that same channel.

Example of prohibited application

While executing **F166** (target value match on instruction) and flag R903A is in the on state, **F167** (target value match off instruction) cannot be executed with CH0.

Restrictions for maximum counting speed/pulse output frequency

The counting speed when using the high–speed counter function will differ depending on the counting mode as shown in the table.

While in the incremental input mode and using the two channels CH0 and CH1, if CH0 is being used at 8 kHz, then CH1 can be used up to 2 kHz.

Example 2:

While in the 2-phase input mode and using the two channels CH0 and CH2, if CH0 is being used at 1 kHz, then CH2 can be used up to 1 kHz.

The maximum output frequency when using the pulse output function will differ depending on the output contact number as shown in the table.

Example 1:

¥

When using either only Y0 or only Y1, the maximum output frequency is 10 kHz.

Example 2:

When using the two contacts Y0 and Y1, the maximum output frequency is 5 kHz.

When using the high-speed counter function and pulse output function, specifications will differ depending on the conditions of use.

Example:

When using one pulse output contact with a maximum output frequency of 5 kHz, the maximum counting speed of the high-speed counter being used simultaneously is 5 kHz with the incremental mode and 1 kHz with the 2-phase mode.

9.3 High-speed Counter Function

9.3 High-speed Counter Function

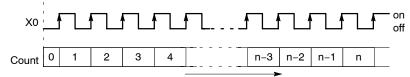
9.3.1 Outline of High-speed Counter Function

High-speed counter function

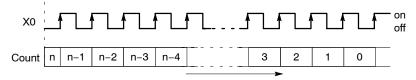
The high-speed counter function counts the input signals, and when the count reaches the target value, turns on and off the desired output.

The high–speed counter function is able to count high–speed pulses of frequencies up to 10 kHz.

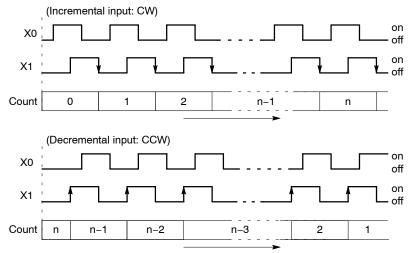
To turn on an output when the target value is matched, use the target value match on instruction (**F166**). To turn off an output, use the target value match off instruction (**F167**).

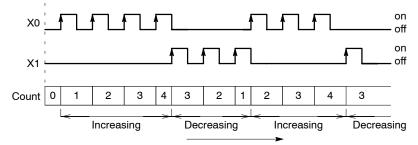

Preset the output to be turned on and off with the SET/RET instruction.

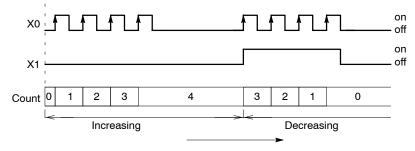
Setting the system register


In order to use the high-speed counter function, it is necessary to set system registers 400 and 401. For detailed information 🖛 section ****

9.3.2 Types of Input Modes

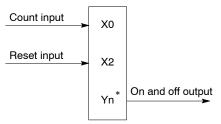

Incremental input mode


Decremental input mode


2-phase input mode

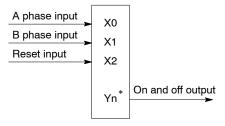
Incremental/decremental input mode (separate input mode)

Directional distinction mode


FP0

9.3.3 I/O Allocation

The inputting, as shown in the table on section 9.2.1, will differ depending on the channel number being used.


The output turned on and off can be specified from Y0 to Y7 as desired with instructions **F166** and **F167**.

When using CH0 with incremental input and reset input

* The output turned on and off when values match can be specified from Y0 to Y7 as desired.

When using CH0 with 2-phase input and reset input

* The output turned on and off when values match can be specified from Y0 to Y7 as desired.

9.3.4 Instructions Used with High-speed Counter Function

High-speed counter control instruction (F0)

This instruction is used for counter operations such as software reset and count disable.

Specify this instruction together with the **F0 (MV)** instruction and the special data register DT9052/DT90052.

Once this instruction is executed, the settings will remain until this instruction is executed again.

Operations that can be performed with this instruction

Counter software reset.

Count enable/disable.

Hardware reset enable/disable.

Clear controls from high-speed counter instructions F166 to F170.

Clear target value match interrupt.

Example:

Performing a software reset

In the above program, the reset is performed in step (1) and 0 is entered just after that in step (2). The count is now ready for operation. If it is only reset, counting will not be performed.

Elapsed value change and read instruction (F1)

This instruction changes or reads the elapsed value of the high-speed counter.

Specify this instruction together with the **F1 (DMV)** instruction and the special data register DT9044/DT90044.

The elapsed value is stored as 32-bit data in the combined area of special data registers DT9044 and DT9045/DT90044 and DT90045.

Use this F1 (DMV) instruction to set the elapsed value.

Example 1:

Set the initial value of K3000 in the high-speed counter (example of changing the elapsed value).

Example 2:

Reads the elapsed value of the high-speed counter and copies it to DT100.

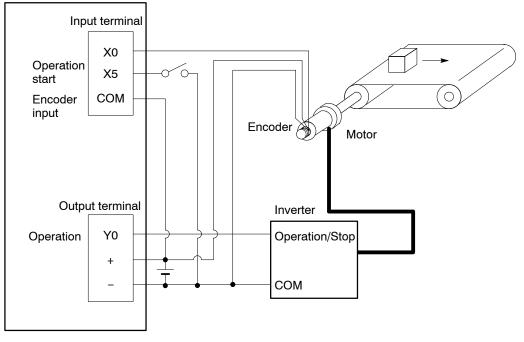
Each time the **ED** instruction is executed, the elapsed value is automatically transferred from the elapsed value area to the special data registers DT9044 and DT9045/DT90044 and DT90045.

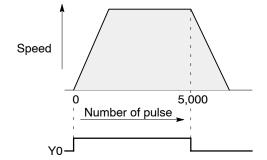
Target value match on instruction (F166)

If the elapsed value (DT9044 and DT9045/DT90044 and DT90045) for channel 0 matches K10000, output Y7 turns on.

If the elapsed value (DT9104 and DT9105/DT90104 and DT90105) for channel 2 matches K20000, output Y6 turns on.

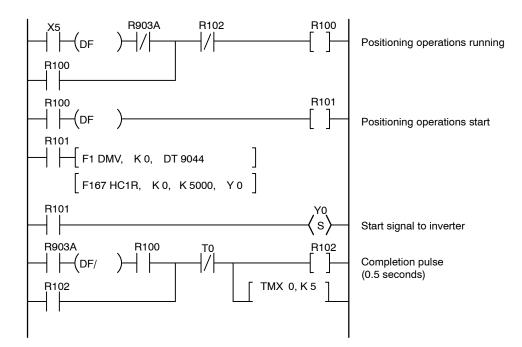
Target value match off instruction (F167)

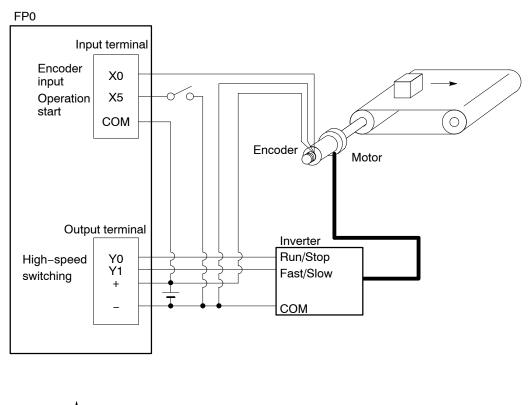

If the elapsed value (DT9048 and DT9049/DT90048 and DT90049) for channel 1 matches K30000, output Y4 turns off.

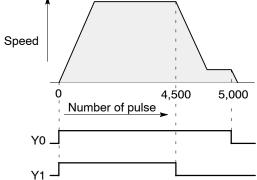

If the elapsed value (DT9108 and DT9109/DT90108 and DT90109) for channel 3 matches K40000, output Y5 turns off.

9.3.5 Sample Program

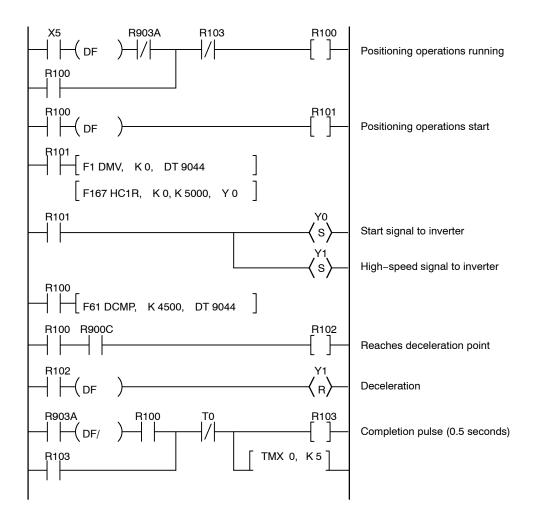
Wiring examples




9.3 High-speed Counter Function


Positioning operations with a single speed inverter

When X5 is turned on, Y0 turns on and the conveyor begins moving. When the elapsed value (DT9044 and DT9045) reaches K5000, Y0 turns off and the conveyor stops.


Wiring example

Positioning operations with a double speed inverter

When X5 is turned on, Y0 and Y1 turn on and the conveyor begins moving. When the elapsed value (DT9044 and DT9045) reaches K4500, Y1 turns off and the conveyor begins decelerating. When the elapsed value reaches K5000, Y0 turns off and the conveyor stops.

9.4 Pulse Output Function

9.4.1 Outline of Pulse Output Function

Instructions used and control settings

The pulse function enables positioning control by use in combination with a commercially available pulse-string input type motor driver.

Provides trapezoidal control with the instruction **F168** for automatically obtaining pulse outputs by specifying the initial speed, maximum speed, acceleration/deceleration time, and target value.

Instruction F168 also enables automatic home return.

JOG operation with the instruction **F169** for pulse output while the execution condition (trigger) is in the on state.

Setting the system register

When using the pulse output function, set the channels corresponding to system registers 400 to "Do not use high-speed counter."

9.4.2 Control Mode

Incremental <relative value control>

Outputs the pulse of the pulse number set by the target value.

By setting H02 (incremental; forward: off; reverse: on) in the control code with instruction **F168**, when the target value is positive, the directional output is turned off and the elapsed value of the high-speed counter increases. When the target value is negative, the directional output turns on and the elapsed value of the high-speed counter decreases. By setting H03 in the control code, the directional output is the reverse of that above.

For detailed information **F168 (SPD1)** and section 9.4.5

Absolute <absolute value control>

Outputs the pulse set by the difference between the current value and the target value. (The difference between the current value and the target value is the output pulse number.)

By setting H12 (absolute; forward: off; reverse: on) in the control code with instruction **F168**, when the current value is less than the target value, the directional output is turned off and the elapsed value of the high-speed counter increases. When the current value is greater than the target value, the directional output turns on and the elapsed value of the high-speed counter decreases. By setting H13 in the control code, the directional output is the reverse of that above.

For detailed information **F168 (SPD1)** and section 9.4.5

Home return

Until the home input (X0 or X1) is entered by executing instruction **F168**, the pulse is continuously output.

To decelerate the movement when near the home, set the bit corresponding to DT9052/ DT90052 to off \rightarrow on \rightarrow off \rightarrow with the near home input.

For detailed information 🖛 F0 (MV), F168 (SPD1) and section 9.4.5

JOG operation

Pulses are output from the specified channel while the trigger for instruction **F169** is in the on state.

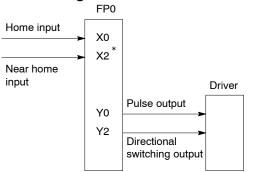
The directional output and output frequency are specified by instruction F169.

For detailed information **F169 (PLS)** and section 9.4.5

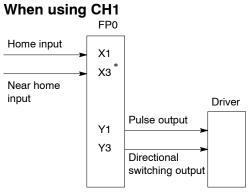
9.4.3 I/O Allocation and Wiring

Single pulse input driver (pulse input and directional switching input)

One output point is used as a pulse output and the other output is used as a directional output.


The pulse output terminal, directional output terminal, and home input I/O allocation is determined by the channel used. For detailed information **w** section 9.2.1

Near home input is substituted by allocating the desired contact point and turning on and off the specified bit of DT9052/DT90052.


For detailed information 🖛 F0 (MV)

Up to two driver systems can be connected.

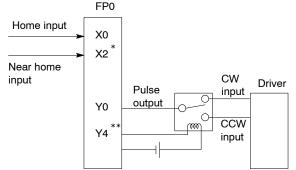
When using CH0

* The near home input specifies the desired input, such as X2.

* The near home input specifies the desired input, such as X3.

Double pulse input driver (CW pulse input and CCW pulse input)

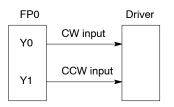
Since a double pulse input is used, switching must be performed by an external relay.


One output contact is used as a pulse output for relay switching.

The pulse output terminal and home input I/O allocation is determined by the channel used. For detailed information 🖛 section 9.2.1

Set the control code for instruction F168 to "No directional output."

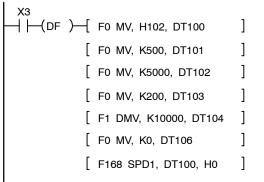
For detailed information **F168 (SPFD1)**


When using CH0

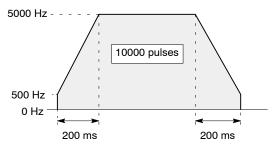
- * X2 or other desired input can be specified for the near home input.
- ** Y4 or other desired output can be specified for the relay switching. At this time, the relay must be switched earlier by the amount of its operation time.

Caution when using a double pulse input driver

When using the FP0 pulse outputs Y0 and Y1 for direct connection to the CW input and CCW input of a driver, the counter elapsed values for the separate channels (ch0 and ch1) increase and decrease in response to the individual outputs. The elapsed values can thus be sent to the program as necessary.



9.4 Pulse Output Function


9.4.4 Instructions Used with Pulse Output Function

Positioning control instruction (F168)

Automatically performs trapezoidal control according to the specified data table.

Generates a pulse from output Y0 at an initial speed of 500 Hz, a maximum speed of 5000 Hz, an acceleration/deceleration time of 200 ms, and a movement amount of 10000 pulses.

At this time the high-speed counter elapsed value (DT9044 and DT9045/DT90044 and DT90045) will be increasing.


- For trapezoidal control, set the initial speed to no more than 5000 Hz.
- For details on troubleshooting procedures when no pulse is output when instruction F168 (SPD1) is executed, refer to page 9 - 32.

Pulse output instruction (F169)

This instruction is for JOG operation by obtaining a pulse from the desired output when the execution condition (trigger) turns on.

X2 F0 MV, H112, DT200 1 F0 MV, K300, DT201 1 [F169 PLS, DT200, H0

While X2 is in the on state, a pulse of 300 Hz with a duty ratio of 10% is output from Y0. At this time, directional output (Y2) is off and the count of the elapsed value for the high-speed counter CH0 (DT9044 and DT9045/DT90044 and DT90045) increases.

While X6 is in the on state, a pulse of 700 Hz with a duty ratio of 10% is output from Y1. At this time, directional output (Y3) is off and the count of the elapsed value for the high-speed counter CH1 (DT9048 and DT9049/DT90048 and DT90049) decreases.

High-speed counter control instruction (F0)

This instruction is used for resetting the built-in high-speed counter, stopping the pulse outputs, and setting and resetting the near home input.

Specify this instruction together with the **F0 (MV)** instruction and the special data register DT9052/DT90052.

Once this instruction is executed, the settings will remain until this instruction is executed again.

Operations that can be performed with this instruction

Clear controls (stopping the pulse outputs) from high-speed counter instructions **F166** to **F170**.

Near home processing for home return operations.

Example 1: Enable the near home input during home return operations and begin deceleration.

Х3 (DF)—[F0 MV, H 4 , DT9052]() [F0 MV, H 0 , DT9052](2)

In the above program, the near home input is enabled in step (1) and 0 is entered just after that in step (2) to perform the preset operations.

Example 2: Performing a forced stop of the pulse output.

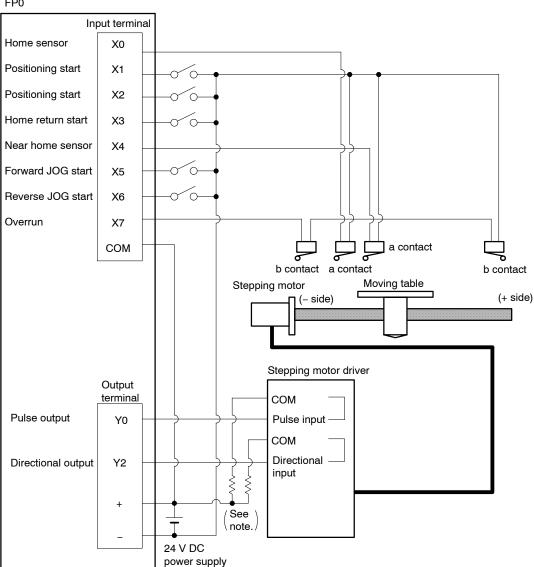
Elapsed value write and read instruction (F1)

This instruction is used to read the pulse number counted by the built-in high-speed counter.

Specify this instruction together with the **F1 (DMV)** instruction and the special data register DT9044/DT90044.

The elapsed value is stored as 32-bit data in the combined area of special data registers DT9044 and DT9045/DT90044 and DT90045.

Use this **F1 (DMV)** instruction to set the elapsed value.


Example 1: Set the initial value of K3000 in the high–speed counter (example of writing the elapsed value).

Example 2: Reads the elapsed value of the high–speed counter to DT100.

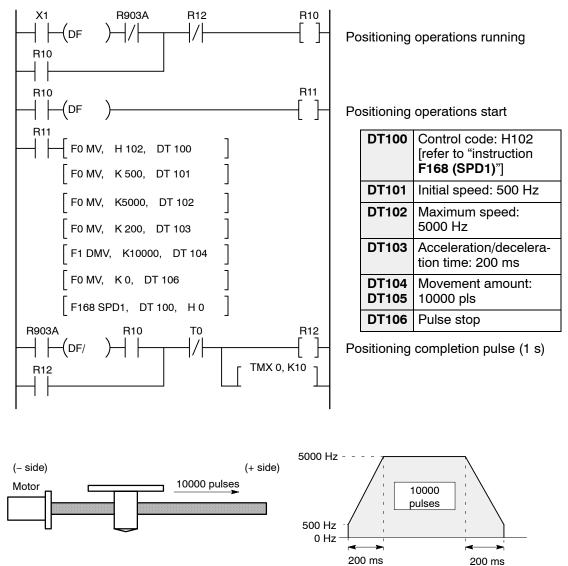
Each time the **ED** instruction is executed, the elapsed value is automatically transferred from the elapsed value area to the special data registers DT9044 and DT9045/DT90044 and DT90045.

9.4 Pulse Output Function

Sample Program for Positioning Control 9.4.5

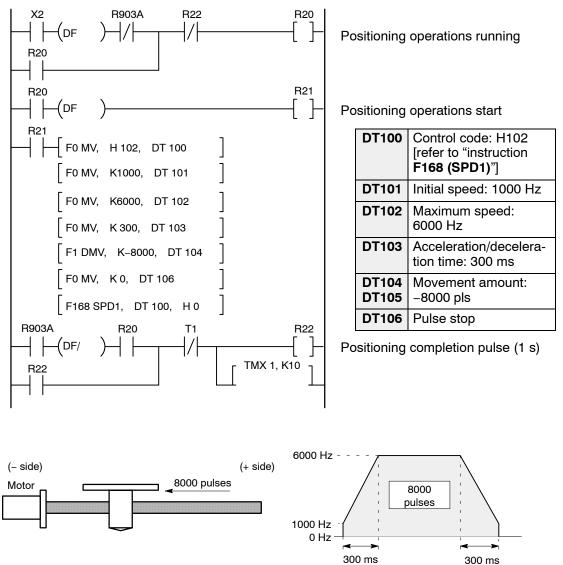
Wiring example

FP0



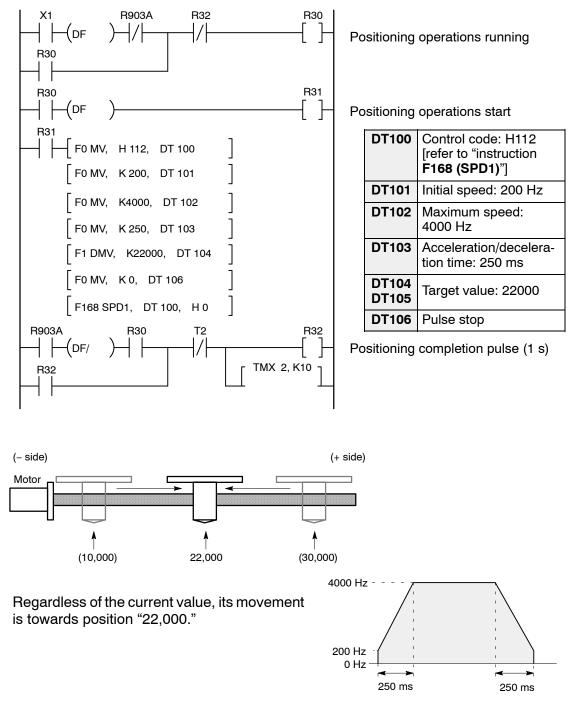
When the stepping motor input is a 5 V photo-coupler type, connect a 2 K Ω 1/4 W resistor.

9.4 Pulse Output Function

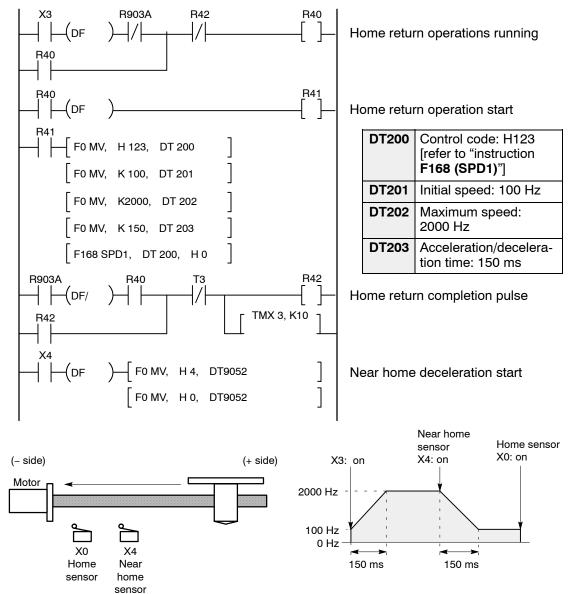

Relative value positioning operation (plus direction)

When X1 turns on, a pulse is output from Y0. At this time, directional output Y2 does not turn on.

Relative value positioning operation (minus direction)

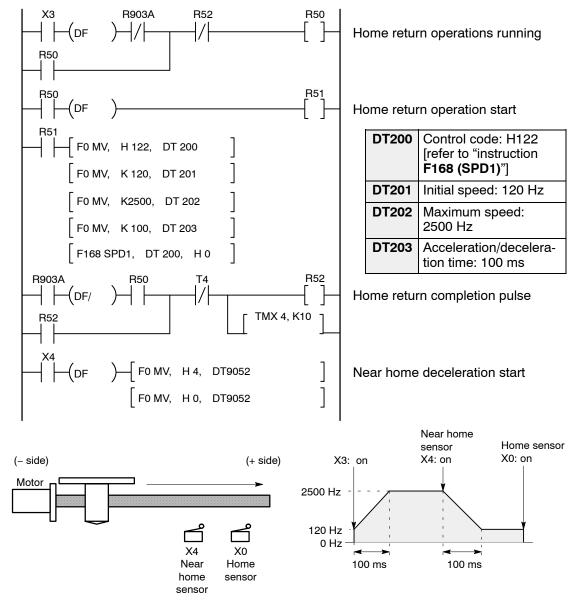

When X2 turns on, a pulse is output from Y0. At this time, directional output Y2 turns on.

9.4 Pulse Output Function

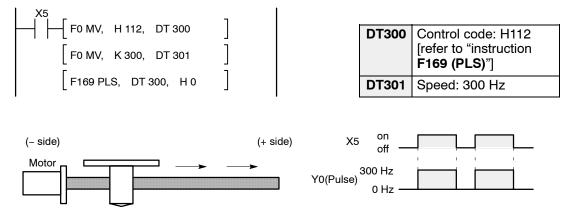

Absolute value positioning operation

When X1 is turned on, pulses are output from Y0. If the current value at that point is larger than "22,000", the direction output Y2 goes on, and if the value is smaller than "22,000", the direction output Y2 does not go on.

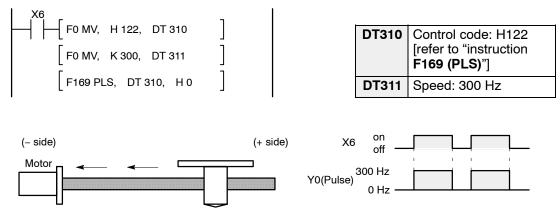
Home return operation (minus direction)


When X3 turns on, a pulse is output from Y0 and the return to home begins. At this time, directional output Y2 turns on. Then, when X4 turns on, deceleration begins, and when X0 turns on, home return is completed. After the return to home is completed, the elapsed value (DT9044 and DT9045/DT90044 and DT90045) are cleared to 0.

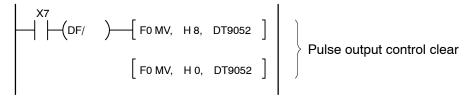
9.4 Pulse Output Function

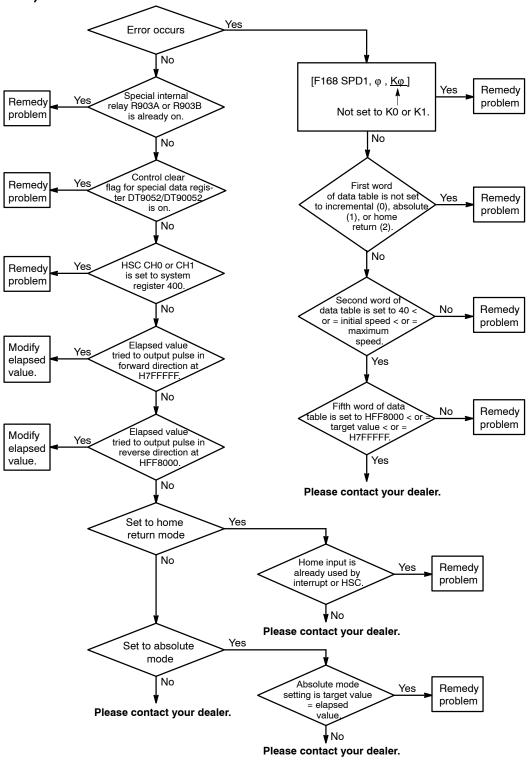

Home return operation (plus direction)

When X3 turns on, a pulse is output from Y0 and the return to home begins. At this time, directional output Y2 does not turn on. Then, when X4 turns on, deceleration begins, and when X0 turns on, home return is completed. After the return to home is completed, the elapsed value (DT9044 and DT9045/DT90044 and DT90045) are cleared to 0.


JOG operation (plus direction)

While X5 is in the on state, a pulse is output from Y0. At this time, directional output Y2 does not turn on.


JOG operation (minus direction)


While X6 is in the on state, a pulse is output from Y0. At this time, directional output Y2 turns on.

Emergency stop (over limit)

If X7 turns off while a pulse is being output from Y0, the output of the pulse is stopped.

Troubleshooting flowchart if a pulse is not output when instruction F168 (SPD1) executed

9.5 **PWM Output Function**

9.5.1 Outline of PWM Output Function

PWM output function

With the instruction **F170 (PWM)**, the specified duty ratio and pulse width modulation is obtained.

Applicable to analog controls such as temperature control and light modulation.

Setting the system register

When using the PWM output function, set the channels corresponding to system registers 400 to "Do not use high-speed counter."

9.5.2 Instruction Used with PWM Output Function

PWM output instruction (F170)

X6		
├─┤]	
[F0 MV, K500, DT101]	
[F170 PWM, DT100, K0]	

While X6 is in the on state, a pulse with a period of 840 ms and duty ratio of 50% is output from Y0.

While X7 is in the on state, a pulse with a period of 1.6 s and duty ratio of 30% is output from Y1.

9.5 PWM Output Function

General-use Serial Communications

10.1	General	-use Serial Communications Function	10 – 3
	10.1.1	General-use Serial Communications	10 – 3
	10.1.2	Data Transmission	10 – 3
	10.1.3	Data Reception	10 – 4
10.2	System	Register Settings	10 – 5
10.3		ons When Using General–use Serial nication	10 – 8
	10.3.1	If "None" is Set for Start and Terminal Codes	10 – 8
	10.3.2	If "Yes" has been Set for the Start and Terminal Codes (Start Code: STX, Terminal Code: ETX)	10 – 9

10.1 General-use Serial Communications Function

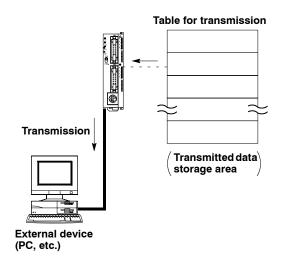
10.1.1 General-use Serial Communications

Using the RS232C port, data and commands can be sent to and received from an external device such as a bar code reader. This is done by executing the **F144 (TRNS)** instruction.

Transmission and reception are not enabled in the default settings, so system register 412 must be changed to a general–use port (K2).

The transmission speed (baud rate) and transmission format are set using system register 413 and 414.

10.1.2 Data Transmission

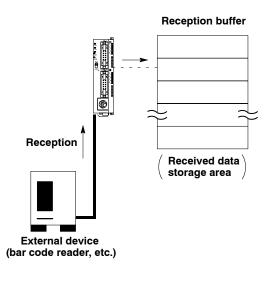

Any desired data register can be prepared as the transmission table, and the data stored in that table transmitted.

Start and terminal codes are automatically added to the data being transmitted, and the data is sent. (For details, see "F144 (TRNS)" instruction.)

The data register to be used as the transmission table is specified using the **F144 (TRNS)** instruction.

Data transmission is executed using the F144 (TRNS) instruction.

There is no restriction on the number of bytes that can be transmitted. Any number of bytes may be sent, as long as it does not exceed the range that can be used by the data register.


10.1.3 Data Reception

Data sent from an external device is received at the RS232C port.

The received data is automatically stored in the data register specified as the reception buffer. (For details see "F144 (TRNS)" instruction.)

Data registers used as reception buffers are specified by system register 417 and 418.

Data reception is enabled by the F144 (TRNS) instruction.

10.2 System Register Settings

10.2 System Register Settings

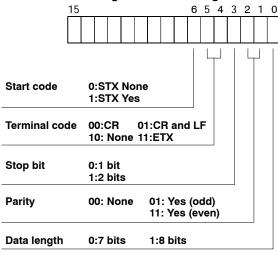
Preparation for Sending and Receiving Data (System Register Settings)

Communication is not enabled in the default settings for the RS232C port. To enable communication, the items outlined below must be specified, using the system registers.

- Usage purpose of the RS232C port
- RS232C transmission format
- Baud rate
- Reception buffer

Setting the Usage Purpose of the RS232C Port (System Register 412)

Specify "General-use port" (this is K2 for the FP Programmer II). This is the setting which enables serial communication.

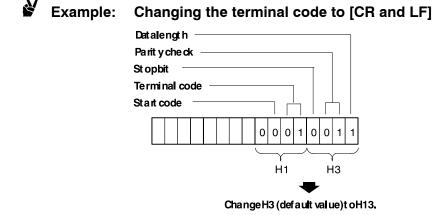

Setting the RS232C Transmission Format (System Register 413)

The transmission format is as follows in the default settings. (With the FP Programmer II, this is H3.)

Data length: 8 bits Parity check: Yes/odd Stop bit: 1 bit Terminal code: CR Start code: STX None

Set these items to match the external device connected to the RS232C port, and if changing the transmission format, enter settings for the pertinent individual items.

With the FP Programmer II, the various items should be selected in bit units, as shown below, and settings entered using H constants.


next page

Start codes (STX) and terminal codes (EXT)

When data is transmitted, the specified code is added automatically to the data being sent. When receiving data, if "Yes" has been specified for the start code parameter, data following the start code is stored in the reception buffer. Also, at the point at which the terminal code is received, the reception completed flag (R9038) goes on. The start and terminal codes themselves are not stored in the reception buffer, however. For details, see section 10.3.2.

Note

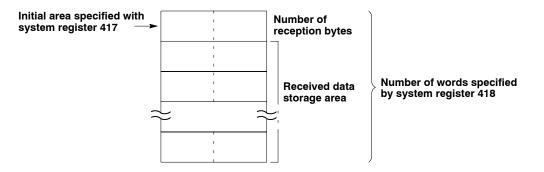
If no terminal codes are specified for either transmission or reception, the reception completed flag will not go on. In this case, watch the number of bytes received to determine whether the reception has been completed.

Setting the Baud Rate (System Register 414)

The baud rate (transmission speed) for general-use serial communication is set to "9600 bps" (H1) in the default settings.

To change this setting to match the external device connected to the RS232C port, select one of the values listed below.

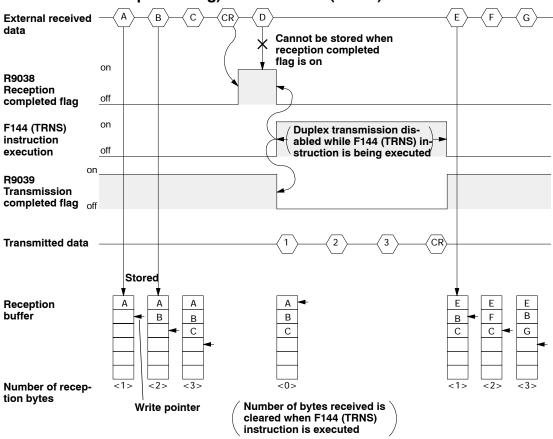
Н	0		0				
H to	H1 anytł	: 960 : 1920 ning c et for rt, the	00 bp other t the b e bau	s than aud	H0 or rate of e will	H0: H1: H2:	


Y

Example: Setting 19,200 bps for both the tool port and RS232C port \ni Write H100.

Setting the Reception Buffer (System Registers 417 and 418)

In the default settings, all areas of the data registers are set to be used as reception buffers. To change the area of the data register used as the reception buffer, specify the initial number in system register 417, and the volume (number of words) in system register 418.


The reception buffer is configured as shown below.

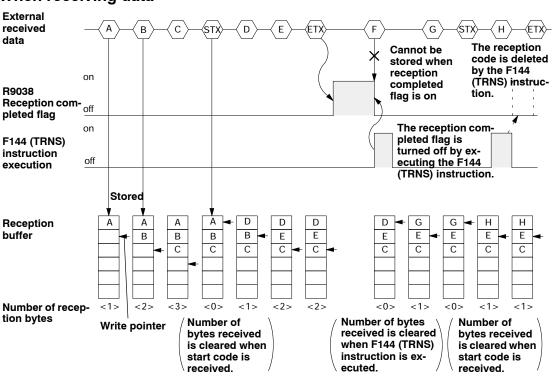
10.3 Operations When Using General-use Serial Communication

10.3.1 If "None" is Set for Start and Terminal Codes

Relationship between the flags (reception completed flag and transmission completed flag) and the F144 (TRNS) instruction

Half-duplex transmission should be used for general-use serial communication.

Reception is disabled when the reception completed flag (R9038) is on.


Be aware that the reception completed flag (R9038) changes even while a scan is in progress. (Example: If the reception completed flag is used multiple times as an input condition, there is a possibility of different statuses existing within the same scan.)

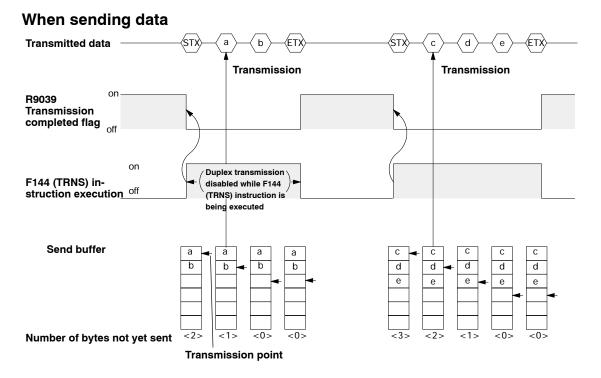
When the **F144 (TRNS)** instruction is executed, the error flag (R9037), reception completed flag (R9038) and transmission completed flag (R9039) go off.

Duplex transmission is disabled while the **F144 (TRNS)** instruction is being executed. Check the transmission completed flag (R9039) to determine whether duplex transmission is possible. When the **F144 (TRNS)** instruction is executed, the number of bytes received is cleared, and the address (write pointer) returns to the initial address in the reception buffer.

Reception stops if the error flag (R9037) goes on. To resume reception, execute the **F144 (TRNS)** instruction. This turns off the error flag, and transmits both actual and empty data.

10.3.2 If "Yes" has been Set for the Start and Terminal Codes (Start Code: STX, Terminal Code: ETX)

When receiving data


The data is stored in the reception buffer in sequential order, but at the point at which the start code is received, the number of bytes received is cleared, and the address (write pointer) is returned to the initial address in the reception buffer.

When the **F144 (TRNS)** instruction is executed, the number of bytes received is cleared, and the address (write pointer) is returned to the initial address in the reception buffer.

If there are two start codes, data following the later start code is overwritten and stored in the reception buffer.

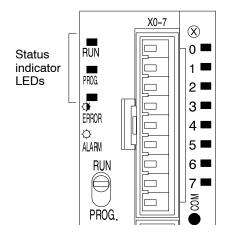
Reception is disabled while the reception completed flag (R9038) is on.

The reception completed flag (R9038) is turned off by the **F144 (TRNS)** instruction. Because of this, if the **F144 (TRNS)** instruction is executed at the same time that the terminal code is received, the reception completed flag will not be detected.

Start codes (STX) and terminal codes (ETX) are automatically added to the data being transmitted, and the data is transmitted to an external device. (For information on start and terminal code settings, see section 10.2.)

Executing the **F144 (TRNS)** instruction turns off the transmission completed flag (R9039).

Duplex transmission is disabled while the **F144 (TRNS)** instruction is being executed. Check the transmission completed flag (R9039) to determine whether duplex transmission is possible.


Self-Diagnostic and Troubleshooting

11.1	Self-Dia	agnostic Function
	11.1.1	Allowing Duplicated Output 11 – 4
	11.1.2	Continuing After an Operation Error 11 – 4
11.2	Trouble	shooting
	11.2.1	ERROR/ALARM LED is Blinking 11 – 5
	11.2.2	ERROR/ALARM LED is ON 11 – 7
	11.2.3	All LEDs are OFF 11 – 7
	11.2.4	Diagnosing Output Malfunction
	11.2.5	PROTECT ERROR is Displayed 11 – 10
	11.2.6	Program Mode does not Change to RUN 11 – 10

11.1 Self-Diagnostic Function

11.1 Self-Diagnostic Function

The FP0 control unit has a self-diagnostic function which identifies errors and stops operation if necessary. When an error occurs, the status of the status indicator LEDs on the FP0 control unit vary, as shown in the table.

Condition	LED status			Description	Program execution
Condition	RUN PROG. ERROR/ALARM		Description	status	
Normal condition	ON	OFF	OFF	Normal operation in RUN mode	Operation
	OFF	ON	OFF	Normal operation in PROG. mode	Stop
	Blink	OFF	OFF	Forcing ON/OFF in RUN mode	Operation
	ON	OFF	Blink	When a self-diagnostic error	Operation
Abnormal condition	OFF	ON	Blink	occurs	Stop
	Varies	Varies	ON	When a system watchdog timer error occurs	Stop

Normally, if an error occurs, operation of FP0 stops.

The user may select whether operation is to be continued or stopped if a duplicate output error or operation error occurs, by setting the system registers. You can set the system registers with TOOL software.

11.1 Self-Diagnostic Function

11.1.1 Allowing Duplicated Output

When you change system register 20 settings ("ENAB") using the programming software, duplicated output is not regarded as an error and the FP0 continues to operate.

11.1.2 Continuing After an Operation Error

When you change system register 26 settings ("CONT") using the programming software, the FP0 continues to operate. In this case, even if the FP0 continues to operate, this is regarded as an error.

11.2 Troubleshooting

11.2.1 ERROR/ALARM LED is Blinking

The self-diagnostic error occurs.

<Procedure 1 > -

Check the error code using the programming tool.

Using FPWIN GR

In the ONLINE mode, select "Monitor" from the menu bar of FPWIN GR. And then select "Status Display". At the "PLC Error Flag" field, self-diagnostic error code is displayed.

Using FP programmer II

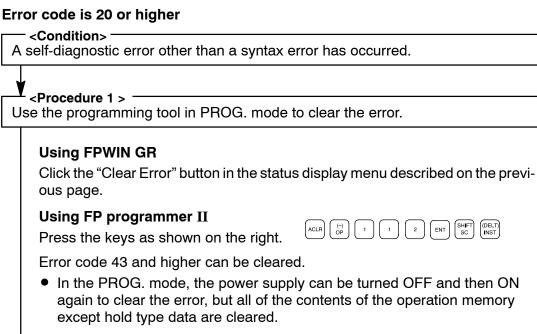
Press the keys on the FP programmer II as shown on the right.

When self-diagnostic error occurs, the screen shown on the right is displayed.

OP- 110 FUNCTION ERR E45

Error code is 1 to 9

<Procedure 1 > `


Change to PROG. mode and clear the error.

<Procedure 2>

Execute a total-check function to determine the location of the syntax error.

Refer to your software manual, for details about the total-check method.

next page

• An error can also be cleared by executing a self-diagnostic error set instruction **F148 (ERR)**.

<Procedure 2 > ⁻

Follow the procedures described in the table of error codes.

When an operation error (error code 45) occurs, the address at which the error occurred is stored in special data registers DT9017 and DT9018. If this happens, monitor the address at which the error occurred before cancelling the error.

11.2.2 ERROR/ALARM LED is ON

The system watchdog timer has been activated and the operation of FP0 has been stopped.

<Procedure 1 >

Set the mode switch from RUN to PROG. and turn the power OFF and then ON.

If the ERROR/ALARM LED is turned ON again, there is probably an abnormality in the FP0. Please contact your dealer.

If the ERROR/ALARM LED is blinked, go to section 11.2.1.

- < Procedure 2 > -

Set the mode switch from PROG. to RUN.

If the ERROR/ALARM LED is turned ON , the program execution time is too long. Check:

- If instructions such as **JP** or **LOOP** are programmed in such a way that a scan can never finish.
- that interrupt instructions are executed in succession.

11.2.3 All LEDs are OFF

— <Procedure 1 > _____
Check the power supply wiring.

_ <Procedure 2>

Check if the power supplied to the FP0 control unit is in the range of the rating.

Be sure to check the fluctuation in the power supply.

<Procedure 3>

Disconnect the power supply wiring to the other devices if the power supplied to the FP0 control unit is shared with them.

If the LEDs on the FP0 control unit turn ON at this moment, the capacity of the power supply is not enough to control other devices as well.

Prepare another power supply for other devices or increase the capacity of the power supply.

11 - 7

11.2.4 Diagnosing Output Malfunction

Check of output condition (output indicator LEDs are ON)

– <Procedure 1 > -

Check the wiring of the loads.

Procedure 2>

Check if the power is properly supplied to the loads.

If the power is properly supplied to the load, there is probably an abnormality in the load. Check the load again.

If the power is not supplied to the load, there is probably an abnormality in the FP0's output circuit. Please contact your dealer.

Check of output condition (output indicator LEDs are OFF)

— <Procedure 1 > _____
Monitor the output condition using a programming tool.

If the output monitored is turned ON, there is probably a duplicated output error.

Procedure 2>

Forcing ON the output using a programming tool.

If the output indicator LED is turned ON, go to input condition check.

If the output indicator LED remains OFF, there is probably an abnormality in the FP0's output circuit. Please contact your dealer.

Check of input condition (input indicator LEDs are OFF)

Check the wiring of the input devices.

<Procedure 2>

Check that the power is properly supplied to the input terminals.

If the power is properly supplied to the input terminal, there is probably an abnormality in the FP0's input circuit. Please contact your dealer.

If the power is not properly supplied to the input terminal, there is probably an abnormality in the input device or input power supply. Check the input device and input power supply.

Check of input condition (input indicator LEDs are ON)

— <Procedure > -

Monitor the input condition using a programming tool.

If the input monitored is OFF, there is probably an abnormality in the FP0's input circuit. Please contact your dealer.

If the input monitored is ON, check the program again.

Also, check the leakage current at the input devices (e.g., two-wire type sensor) and check for the duplicated use of output or the program flow when a control instruction such as **MC** or **JP** is used.

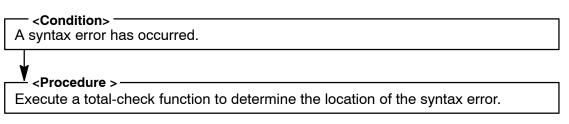
Check the settings of the I/O allocation.

FP0

11.2 Troubleshooting

11.2.5 PROTECT ERROR is Displayed

When a password is set for the programmable controller


- <Procedure > -

Enter a password in the password setting menu in the FPWIN GR software and select enable.

- 1. In the menu select [Tool (T)] and then [Set PLC Password (P)].
- 2. The PLC password setting dialog box appears, shown below. Select the [Access] radio button, enter the password, and then click the [Settings] button.

Set PLC Password - Untitle2	×
PLC : Home	Settings
Operation Mode	Close
Access Protect	Force Cancel
C Unprotect	Help
Password Enter in hex:	

11.2.6 Program Mode does not Change to RUN

Refer to your software manual, for details about the total-check method.

Specifications

12.1	Perform	ance Specifications	12 – 3
12.2	I/O Alloo	cation Table	12 – 7
12.3	Relays,	Memory Areas and Constants	12 – 10
12.4	FP0-SL	.1 S-LINK Address	12 – 12
12.5	Specific	ation: Power Supply Unit I/O Link Unit	12 – 13
	12.5.1	FP0 Power Supply Unit (AFP0634)	12 – 13
	12.5.2	FP0 I/O Link Unit	12 – 13

Specifications

12.1 Performance Specifications

Item			Relay out	put type	Transisto	or output ty	pe	S-LINK type	
			C10RS/ C10RM/ C10CRS/ C10CRM		C16T/ C16P/ C16CT/ C16CP	C32T/ C32P/ C32CT/ C32CP	T32C	SL1	
Programmi	ng metho	d/Control method	Relay symb	ol/Cyclic ope	eration			•	
Controllable I/O Basic unit points		Total: 10 Input: 6 Output: 4	Total: 14 Input: 8 Output: 6	Total: 16 Input: 8 Output: 8	Total: 32 Input: 16 Output: 16	Total: 32 Input: 16 Output: 16	Max. 128 Input: 64 Output: 64 at S–LINK block		
		With expansion unit 1 When confi- gured with same output type as control unit	Max. 58	Max. 62	Max. 112	Max. 128	Max. 128	Max. 96 at expansion block	
		With expansion unit 2 When relays and transistors are mixed	Max. 106	Max. 110	Max. 112	Max. 128	Max. 128		
Program m	emory	Built-in memory	Built in EEPROM (without battery)						
Program ca						5,000 steps	10,000 steps	5,000 steps	
Numbers o instruction	-	Basic	83						
		High-level	145						
Operation			0.9µs/step (by basic instruction)						
I/O refresh	and base	time	With no expansion board: 0.3ms With expansion board(s): 0.3ms and (1 x number of expansion boards) ms						
Operation memory points	Relay	Internal relay (R)	1,008 points	s (R0 to R62	F)		1,008 points (R0 to R62F) (* Note 1)	1,008 points (R0 to R62F)	
		Special internal relay (R)	64 points (R9000 to R903F)						
		Timer/Counter (T/C)	points, C10	0 to C143 (*	Note 2))	r points, T0 to ; selected by	o T99 / 44 co instruction	unter	
	Memory area	Data register (DT)	1,660 words	s (DT0 to DT	1659)	6,144 words (DT0 to DT6143)	16,384 words (DT0 to DT16383) (* Note 1)	6,144 words (DT0 to DT6143)	
		Special data register (DT)		DT9000 to D	DT9111)		112 words (DT90000 to DT90111)	112 words (DT9000 to DT9111)	
		Index register (IX, IY)	2 words						
Differential			Unlimited or	f points					
	-	points (MCR)	32 points				1	1	
Number of	labels (JF	P and LOOP)	64 labels				255 labels	64 labels	

12.1 Performance Specifications

ltem		Relay out	put type	Transisto	or output t	уре	S–LINK type
		'	C14RS/ C14RM/ C14CRS/ C14CRM		C32T/ C32P/ C32CT/ C32CP	T32C	SL1
Number of	step ladders	128 stages				704 stages (* Note 1)	128 stages
Number of	subroutines	16 subrouti	nes			100 sub- routines	16 sub- routines
Number of	interrupt programs	7 programs	(external 6	points, inter	nal 1 point)		1 program (internal 1 point)
Self-diagno	osis function	Such as wa	atchdog time	r, program s	yntax check		
Clock/cale	nder function	Not availab	le			Available (* Note 3)	Not available
Special functions	Pulse catch input	Total 6 poir / X0 to X1				1	Not available
	Interrupt input	X2 to X5					
	RS232C port (* Note 4)	Transmissi	on distance:	3m/9.84ft.)/9600/19200	bit/s
	(Only units with an RS232C port)	(products n	ock: 3–pin, n umber: MKE ation methoc)S1/3–3.5)		t Co.	
	Periodical interrupt	0.5ms to 30)s interval				
	Constant scan	Available					
	Password	Available					
	High- speed counter function	Counter m					Not available
	(* Note 5)	Addition/su	btraction (or	ie phase) (*	Note 7)		available
	, , , , , , , , , , , , , , , , , , ,	– Input poi	nt number:				
		Four chann	els maximur	n			
		– Maximur	n counting a	speed:			
		10kHz max	imum for all	4 channels			
		– Input coi	ntacts used	:			
		X1: cour X2: rese	it input (ch 0 it input (ch 1 t input (*Not) X4 e8) X8	3: count inpu 4: count inpu 5: reset input	it (ch 3)	
			n input puls				
			(1	• •			
				100 μs, ·	<5kHz>		
		Counter n					Not available
			e/individual/o		cision (two-p	ohase)	available
			int number				
			iels maximui				
			m counting	-			
			mum for all :				
		⊂ X0: cour	ntacts used nt input (ch 0 nt input (ch 0 t input		<3: count inp<4: count inp<5: reset inp	out (ch 2)	
		– Minimur	n input puls				
		_					
		X0. X1		50 us. <10k	Hz>		

Item			Relay out	put type	Transisto	r output ty	pe	S-LINK type
			C10RS/ C10RM/ C10CRS/ C10CRM	C14RS/ C14RM/ C14CRS/ C14CRM	C16T/ C16P/ C16CT/ C16CP	C32T/ C32P/ C32CT/ C32CP	T32C	SL1
Special functions	Pulse output function	Output point number	Not availabl	le		ndent points polation func		Not available
	(* Note 6,10)	Output frequency	Not availabl	e	output)	<hz (y0="" c<br="" y1:="">Hz (Y0/Y1: tw</hz>		Not available
	PWM out- put func- tion	Output point number	Not availabl	le	Two points	(Y0 and Y1)		Not available
	(* Note 6)	Output frequency			38Hz, (* Note 9) Duty: 0.1% to 99.9%		Fre- quency: 0.15Hz to 1KHz Duty: 0.1% to 99.9%	Not available
Memory backup (* Note 6)	Program a register	nd system	EEPROM					
(* Note 12)	Operation	memory	supply fails retained by – Number o fixed hold a memories Counters: 4 Internal rela	n are held if t are fixed, an the EEPROM of points/word reas in the va points (* No tys: 32 points ers: 8 words	d are A. Is of the arious te 16) to 16) the low is the source of t		backed up using built- in charge- able (sec- ondary) battery, so the hold type mem- ory areas can be specified using the program- ming tools. (* Note 11) - Memory areas which can be speci- fied:	Areas which are held if the power sup- ply fails are fixed, and are retained by the EEROM. - Number of points/ words of the fixed hold areas in the various memories Counters: 16 points (* Note 16) Internal re- lays: 128 points Date registers: 32 words (* Note 14)
	Backup by F12/F13 ins		Available fo	r all data reg	isters	1		1

🖛 next page

Protes

1) Hold or non-hold type can be set using the system registers.

- 2) The proportion of timer points to counter points can be changed using a system register 5.
- Precision of calender timer: At 0°C/32°F, less than 139 second error per month. At 25°C/77°F, less than 72 seconds error per month. At 55°C/131°F, less than 169 seconds error per month.
 - At 55°C/131°F, less than 169 seconds error per month. This accuracy is considered to be the worst fluctuation coefficient value based on fluctuations in the normal voltage of 5V and the battery backup voltage of 3V. Also, F157 and F158 (time/date addition and subtraction instructions) cannot be used.
- 4) Although it has adequate tolerance noise, it is recommendable to make the user program to execute retransmission (in order to improve reliability of the communication when a communication error occurs due to excessive noises or when a receiver equipment cannot receive data temporarily.) The driver IC for the RS232C is in full conformance with EIA/TIA-232E and CCITT V.28 standards.
- 5) The combinations 1 phase \times 2 channels and 2 phases \times 1 channel are also possible for the high–speed counter.
- 6) The internal relay, data register, and timer/counter hold areas of the T32CT control unit (10 k step type) can be changed by the system registers. The number of points in the table is the value when the system registers are initial values.
- 7) The max. counting speed (10kHz) is the counting speed with a rated input voltage of 24V DC and an ambient temperature of 25°C. The counting speed (frequency) will decrease depending on the voltage and temperature.
- 8) If both reset inputs X0 and X1 are reset, X2 will be the reset input of X1. In the same way, for X3 and X4, X5 acts as the reset input of X4.
- 9) With a CPU of Ver. 1.2 or a subsequent version, the frequency will be 0.15Hz to 1kHz.
- 10) The maximum is 9.5kHz when the positioning control instruction (F168) is executed.
- 11) Precautions when using the battery backup function Secondary (chargeable) battery is used as backup battery in the FP0 T32C control unit. The battery is not charged before the unit is shipped, so please make sure that the built-in backup battery have been charged before using the unit.
- 12) The program, system registers and the hold type areas (internal relay, data register and counter) are backed up by the built in EEPROM.

i Notes

- 13) The possible number of write times by the EEPROM write instruction is 100,000 or less.
- 14) The possible number of write times by the EEPROM write instruction is 10,000 or less.
- 15) If the power supply is turned off while the P13 instruction is being executed, the data written by the P13 instruction may not be written in the EEPROM properly. Also, the area where the internal relays, data registers and timer/counter are held may not be held properly. Do not turn off the power supply while the P13 instruction is being executed.
- 16) The contact information and the elapsed value (EV) of the counter is backed up. The setting value (SV) is not held.

12.2 I/O Allocation Table

FP0 Control Units

The I/O allocation of the FP0 control unit is fixed.

Type of Control Unit		I/O number
C10 series	Input: 6 points	X0 to X5
	Output: 4 points	Y0 to Y3
C14 series	Input: 8 points	X0 to X7
	Output: 6 points	Y0 to Y5
C16 series	Input: 8 points	X0 to X7
	Output: 8 points	Y0 to Y7
C32/T32 series	Input: 16 points	X0 to XF
	Output: 16 points	Y0 to YF

S-LINK Control Units

The I/O allocation of the S-LINK control unit is fixed.

Unit	FP0 I/O	S-LINK address
Input: 64 points	X80 to X8F	0 to 15
	X90 to X9F	16 to 31
	X100 to X10F	32 to 47
	X110 to X11F	48 to 63
Output: 64 points	Y80 to Y8F	64 to 79
	Y90 to Y9F	80 to 95
	Y100 to Y10F	96 to 111
	Y110 to Y11F	112 to 127

FP0 Expansion Units

The I/O allocation of the FP0 expansion unit is determined by order of connection.

Type of Expansion Unit		I/O number				
		First expansion	Second expansion	Third expansion		
E8X	Input: 8 points	X20 to X27	X40 to X47	X60 to X67		
E8R	Input: 4 points	X20 to X23	X40 to X43	X60 to X63		
	Output: 4 points	Y20 to Y23	Y40 to Y43	Y60 to Y63		
E8YR/E8YT/E8YP	Output: 8 points	Y20 to Y27	Y40 to Y47	Y60 to Y67		
E16X	Input: 16 points	X20 to X2F	X40 to X4F	X60 to X6F		
E16R/E16T/E16P	Input: 8 points	X20 to X27	X40 to X47	X60 to X67		
	Output: 8 points	Y20 to Y27	Y40 to Y47	Y60 to Y67		
E16YT/E16YP	Output: 16 points	Y20 to Y2F	Y40 to Y4F	Y60 to Y6F		
E32T/E32P	Input: 16 points	X20 to X2F	X40 to X4F	X60 to X6F		
	Output: 16 points	Y20 to Y2F	Y40 to Y4F	Y60 to Y6F		

Analog I/O Unit

The I/O allocations of the analog I/O unit are determined by the position at which the unit is installed.

Туре		First expansion	Second expansion	Third expansion
A21	Input: CH0 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
	Input: CH1 16 points	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)
	Output: 16 points	WY2 (Y20 to Y2F)	WY4 (Y40 to Y4F)	WY6 (Y60 to Y6F)

A/D Converter Unit and Thermocouple Unit

The data of each channel switches and then reads or writes by the user program which contains the conversion data switch flag.

Туре		First expansion	Second expansion	Third expansion
A80,	Input: CH0, 2, 4, 6 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
TC4, TC8	Input: CH1, 3, 5, 7 16 points	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)

D/A Converter Unit

The data of each channel switches and then reads or writes by the user program which contains the conversion data switch flag.

Туре		First expansion	Second expansion	Third expansion
A04V	Input: 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
A04I	Output: CH0, 2, 16 points	WY2 (Y20 to Y2F)	WY4 (Y40 to Y4F)	WY6 (Y60 to Y6F)
	Output: CH1, 3, 16 points	WY3 (Y30 to Y3F)	WY5 (Y50 to Y5F)	WY7 (Y70 to Y7F)

I/O Link Unit

The I/O allocation of the I/O link unit is determined by order of connection.

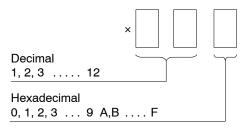
Туре		First expansion	Second expansion	Third expansion
IOL	Input: 32 points	X20 to X3F	X40 to X5F	X60 to X7F
	output: 32 points	Y20 to Y3F	Y40 to Y5F	Y60 to Y7F

RTD Unit

Туре		First expansion	Second expansion	Third expansion
RTD6	Input CH0, 2, 4: 16 points	WX2 (X20 to X2F)	WX4 (X40 to X4F)	WX6 (X60 to X6F)
	Input CH1, 3, 5: 16 points	WX3 (X30 to X3F)	WX5 (X50 to X5F)	WX7 (X70 to X7F)
	Output: 16 points	WY2 (Y20 to Y2F)	WY4 (Y40 to Y4F)	WY6 (Y60 to Y6F)

Note

Please verify with the manual for the FP0 CC-Link slave unit.


12.2 I/O Allocation Table

Expression of numbers for input/output relays

Since input/output relays X and Y are handled in units of 16 points, they are expressed as a combination of decimal and hexadecimal numbers as shown below.

Example: External input relay "X"

Х	0, X	1		 			 		 	Х	F
Х	10, X	11		 			 		 	Х	1F
Х	20, X	21		 			 		 	Х	2F
te	o to	c									to
Х	70, X	71		 			 		 	Х	7F

12.3 Relays, Memory Areas and Constants

Item			Numbering)		Function	
			C10/C14/ C16	C32/SL1	T32		
Relays	External input relay	х	208 points (>	(0 to X12F)		Turns on or off based on exter- nal input.	
	External out- put relay	Y	208 points (\	/0 to Y12F)		Externally outputs on or off state.	
	Internal relay (* Note 1)	R	1,008 points (R0 to R62F)		Relay which turns on or off only within program.		
	Timer (* Note 1)	т	144 points (T0 to T99/C (* Note 2)	100 to C143)		If a TM instruction has timed out, the contact with the same number turns on.	
	Counter (* Note 1)	С	, ,			If a CT instruction has counted up, the contact with the same number turns on.	
	Special internal relay	R	64 points (R9000 to R	903F)		Relay which turns on or off based on specific conditions and is used as a flag.	
Memory Areas	External input relay	WX	13 words (WX0 to WX	12)		Code for specifying 16 external input points as one word (16 bits) of data.	
	External output relay	WY	13 words (WY0 to WY	12)	Code for specifying 16 external output points as one word (16 bits) of data.		
	Internal relay (* Note 1)	WR	63 words (WR0 to WR	62)	Code for specifying 16 internal relay points as one word (16 bits) of data.		
	Data register (* Note 1)	DT	1,660 words (DT0 to DT1659)	6,144 words (DT0 to DT6143)	16,384 words (DT0 to DT16383)	Data memory used in program. Data is handled in 16-bit units (one word).	
	Timer/Counter set value area (* Note 1)	SV	144 words (SV0 to SV1	43)	Data memory for storing a target value of a timer and an in- itial value of a counter. Stores by timer/counter number.		
	Timer/Counter elapsed value are (* Note 1)	EV ea	144 words (EV0 to EV1	43)	Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/counter number.		
	Special data register	DT	112 words (DT9000 to [DT9111)	112 words (DT90000 to DT90111)	Data memory for storing specific data. Various settings and error codes are stored.	
	Index register	IX IY	2 words (IX,	IY)		Register can be used as an ad- dress of memory area and con- stants modifier.	
Control instruction	Master control re points (MCR)	lay	32 points				
point	Number of labels (JP and LOOP)		64 labels 255 labels				
	Number of step ladders		128 stages 704 stages (* Note 1)				
	Number of subroutines		16 subroutin	es	100 subrou- tines		
	Number of interro	upt	7 programs (point)	external 6 poi	nts, internal 1		
			SL1: 1 progr	am (internal 1	point)		

12.3 Relays, Memory Areas and Constants

Item			Numbering	J	Function				
			C10/C14/ C16	C32/SL1	T32				
Constant	Decimal con-	К	K-32768 to K32767 (for 16-bit operation)						
	stants		K-2147483648 to K2147483647 (for 32-bit operation)						
	Hexadecimal	н	H0 to HFFFF (for 16-bit operation)						
	constants		H0 to HFFFFFFF (for 32-bit operation)						

Notes

 There are two unit types, the hold type that saves the conditions that exist just before turning the power off or changing from the RUN mode to PROG. mode, and the non-hold type that resets them. These areas can be specified as hold type or non-hold type by setting system register. For the FP0 T32, the selection of hold type and non-hold type can be changed by the setting of system register. For the FP0 C10/C14/C16/C32/SL1, that area is fixed and allotted the numbers as shown below.

Hold type and non-hold type areas

Item		C10/C14/C16	C32/SL1
Timer		Non-hold type: All points	
Counter	Non-hold type	From the set value to C139	From the set value to C127
	Hold type	4 points (elapsed values) (C140 to C143)	16 points (elapsed values) C128 to C143
Internal relay	Non-hold type	976 points (R0 to R60F)	880 points (R0 to R54F)
		61 words (WR0 to WR60)	55 words (WR0 to WR54)
	Hold type	32 points (R610 to R62F) 2 words (WR61 to WR62)	128 points (R550 to R62F) 8 words (WR55 to WR62)
Data register	Non-hold type	1652 words (DT0 to DT1651)	6112 words (DT0 to DT6111)
	Hold type	8 words (DT1652 to DT1659)	32 words (DT6112 to DT6143)

2) The points for the timer and counter can be changed by the setting of system register 5. The number given in the table are the numbers when system register 5 is at its default setting.

12.4 FP0-SL1 S-LINK Address

I/O ad-	S-LINK	address	I/O ad-	S-LINH	S-LINK address I/O ad		S-LINH	(address	I/O ad-	S-LINK	K address
dress input (X)	Deci- mal	Hexade- cimal	dress input (X)	Deci- mal	Hexade- cimal	dress input (X)	Deci- mal	Hexade- cimal	dress input (X)	Deci- mal	Hexade- cimal
X80	0	0	X90	16	10	X100	32	20	X110	48	30
X81	1	1	X91	17	11	X101	33	21	X111	49	31
X82	2	2	X92	18	12	X102	34	22	X112	50	32
X83	3	3	X93	19	13	X103	35	23	X113	51	33
X84	4	4	X94	20	14	X104	36	24	X114	52	34
X85	5	5	X95	21	15	X105	37	25	X115	53	35
X86	6	6	X96	22	16	X106	38	26	X116	54	36
X87	7	7	X97	23	17	X107	39	27	X117	55	37
X88	8	8	X98	24	18	X108	40	28	X118	56	38
X89	9	9	X99	25	19	X109	41	29	X119	57	39
X8A	10	А	X9A	26	1A	X10A	42	2A	X11A	58	ЗA
X8B	11	В	X9B	27	1B	X10B	43	2B	X11B	59	3B
X8C	12	С	X9C	28	1C	X10C	44	2C	X11C	60	3C
X8D	13	D	X9D	29	1D	X10D	45	2D	X11D	61	3D
X8E	14	E	X9E	30	1E	X10E	46	2E	X11E	62	3E
X8F	15	F	X9F	31	1F	X10F	47	2F	X11F	63	3F

I/O ad- dress	S-LINK	address	I/O ad- dress	S-LINK	address	I/O ad- dress	S-LINK address		I/O ad- dress	S-LINK	address
input (Y)	Deci- mal	Hexade- cimal	input (Y)	Deci- mal	Hexade- cimal	input (Y)	Deci- mal	Hexade- cimal	input (Y)	Deci- mal	Hexade- cimal
Y80	64	40	Y90	80	50	Y100	96	60	Y110	112	70
Y81	65	41	Y91	81	51	Y101	97	61	Y111	113	71
Y82	66	42	Y92	82	52	Y102	98	62	Y112	114	72
Y83	67	43	Y93	83	53	Y103	99	63	Y113	115	73
Y84	68	44	Y94	84	54	Y104	100	64	Y114	116	74
Y85	69	45	Y95	85	55	Y105	101	65	Y115	117	75
Y86	70	46	Y96	86	56	Y106	102	66	Y116	118	76
Y87	71	47	Y97	87	57	Y107	103	67	Y117	119	77
Y88	72	48	Y98	88	58	Y108	104	68	Y118	120	78
Y89	73	49	Y99	89	59	Y109	105	69	Y119	121	79
Y8A	74	4A	Y9A	90	5A	Y10A	106	6A	Y11A	122	7A
Y8B	75	4B	Y9B	91	5B	Y10B	107	6B	Y11B	123	7B
Y8C	76	4C	Y9C	92	5C	Y10C	108	6C	Y11C	124	7C
Y8D	77	4D	Y9D	93	5D	Y10D	109	6D	Y11D	125	7D
Y8E	78	4E	Y9E	94	5E	Y10E	110	6E	Y11E	126	7E
Y8F	79	4F	Y9F	95	5F	Y10F	111	6F	Y11F	127	7F

12.5 Specification: Power Supply Unit I/O Link Unit

12.5.1 FP0 Power Supply Unit (AFP0634)

Item		Specification
Input	Rated operating voltage	100 to 240 V AC
	Operating voltage range	85 to 264 V AC
	Frequency	50/60 Hz
	Rated frequency	47 to 63 Hz
	phase	Single-phase
	Inrush current	30 A (0-p) or less (Cold start)
	Leakage current	0.75mA
	Holding time	10ms
Output	Rated output	24V (±5%) DC 0.7A
	Rated output current	0 to 0.7A
	Output ripple	500mV(p–p) or less
Regulation	Over Current Regulation	0.74A
	Over Voltage Regulation	Available
Life time		20,000h (at 55 °C)

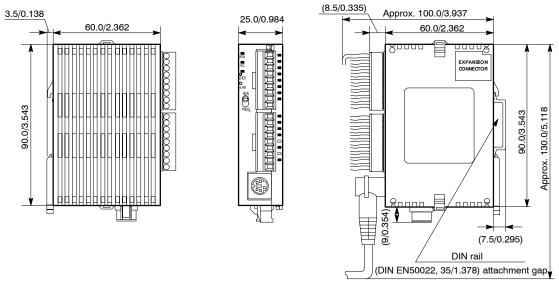
12.5.2 FP0 I/O Link Unit (AFP0732)

Item	Specification
Communication method	Two-line, half-duplex
Synchronous method	A synchronization system
Transmission line	Twisted cables (Twisted pair cable or VCTF Min. 0.75mm ² *2C(JIS))
Transmission distance (Total length)	Max. 700m (Twisted pair cable) Max. 400m (VCTF)
Baud rate	0.5Mbps
Number of I/O points per one I/O Link unit	64 points Note) (Input 32 point + Output 32 point)
I/O map of FP0 I/O Link Unit	32X / 32Y
Interface	RS485
Communication error check method	CRC (Cyclic Redundancy Check)

i Note

This number is the number of points that I/O link is available through the host PLC and the network MEWNET-F. In the case I/O Link error flag is on (valid), Number of I/O points are 63 points. (Input 31 points + Output 32 points)

Dimensions


. /
S/ 13 – 3
RM/ 13 – 3
Г/Е16Р/ 16YT/ 13 – 4
CT/ 13 – 4
13 – 5
13 – 5
13 – 6
13 – 7
13 – 8
13 – 9
13 – 9
13 – 9
13 – 10
13 – 10
13 – 11

Dimensions

13.1 Control Unit and Expansion I/O Unit

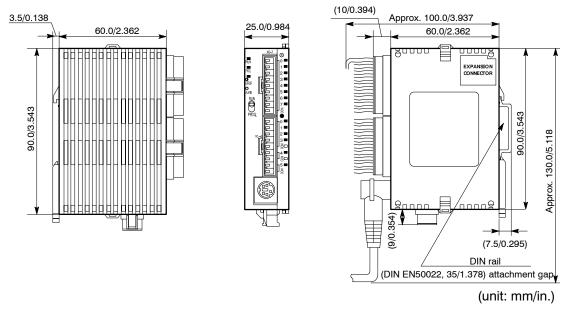
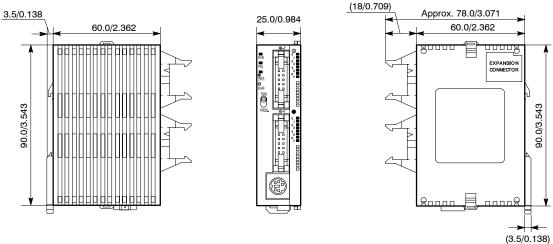

13.1.1 FP0-C10RS/C10CRS/C14RS/C14CRS/E8RS/E16RS

Illustration: FP0-C14RS

(unit: mm/in.)

13.1.2 FP0-C10RM/C10CRM/C14RM/C14CRM/E8RM/E16RM


Illustration: FP0-C14RM

Reference measurements for wiring

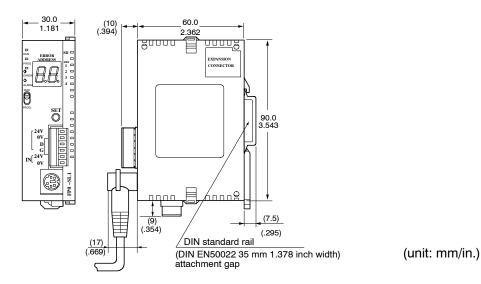
Reference measurements for wiring

FP0-C16T/C16CT/C16P/C16CP/E16T/E16P/E8X/E8YT/E8YP/E32T/E32P 13.1.3 /E16X/E16YT/E16YP

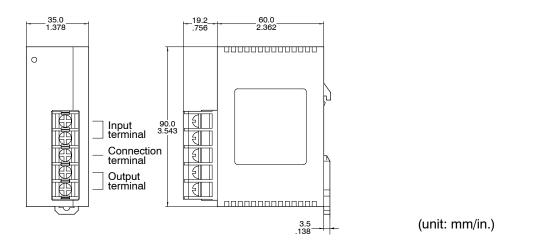
Illustration: FP0-C16T

(unit: mm/in.)

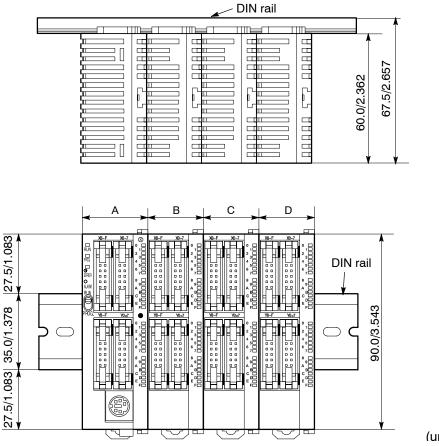
FP0-C32T/C32CT/C32P/C32CP/T32CT/T32CP 13.1.4


Illustration: FP0-C32T

(18/0.709) Approx. 78.0/3.071 3.5/0.138 30.0/1.181 60.0/2.362 60.0/2.362 EXPANSION CONNECTOR 90.0/3.543 90.0/3.543 ннн ннн (3.5/0.138)


(unit: mm/in.)

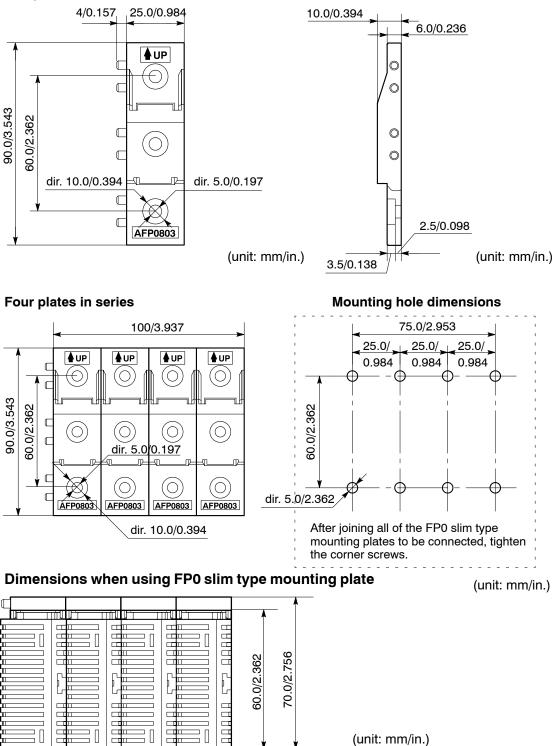
Reference measurements for wiring


Reference measurements for wiring

13.2 FP0 Power Supply Unit

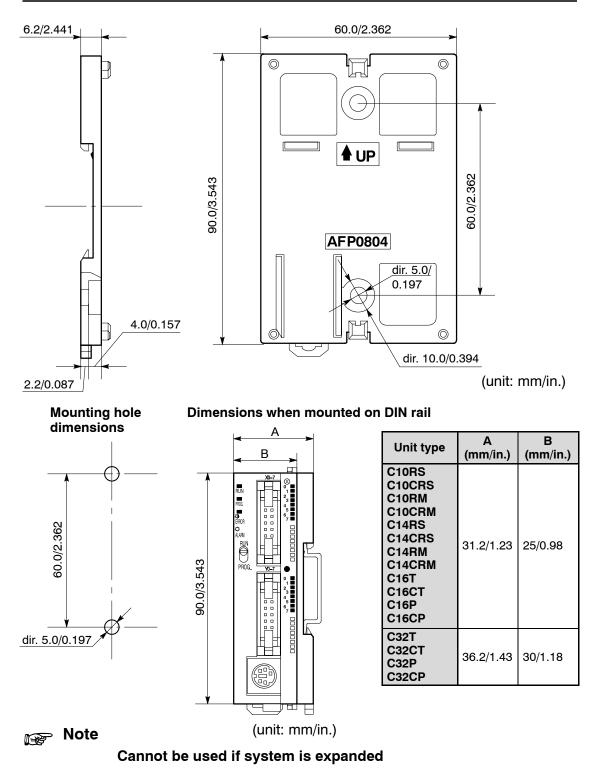
13.3 Mounting on DIN Rail

(unit: mm/in.)

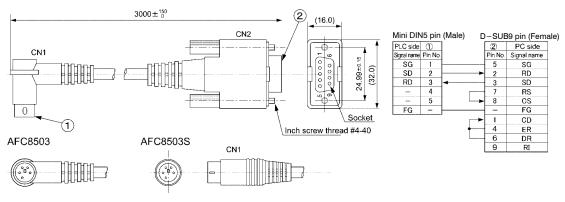

🔊 Note

A + B +C + D dimensions (Unit: mm/in.)

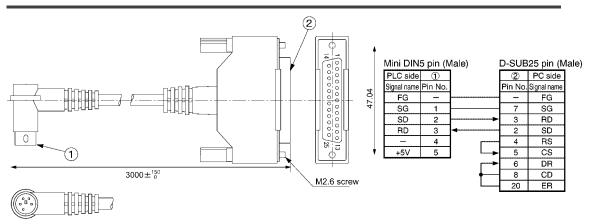
Control unit type	A (Control unit only)	A+B (1 expansion unit connected)	A+B+C (2 expansion units connected)	A+B+C+D (3 expansion units connected)
C10RS, C10CRS, C10RM, C10CRM, C14RS, C14CRS, C14RM, C14CRM, C16T, C16CT, C16P, C16CP	25/0.984	50/1.969	75/2.953	100/3.937
C32T, C32CT, C32P, C32CP	30/1.181	55/2.165	80/3.150	105/4.134


13.4 FP0 Slim Type Mounting Plate

One plate

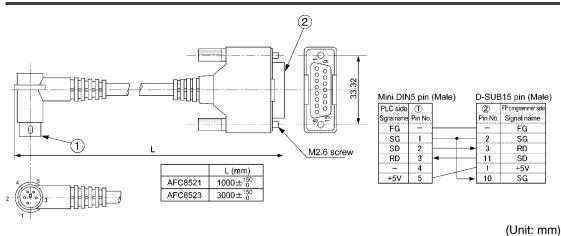

13.5 FP0 Flat Type Mounting Plate

13.5 FP0 Flat Type Mounting Plate

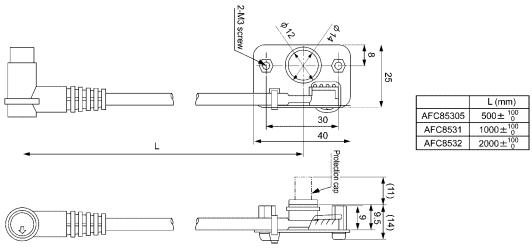

13.6 Cable/Adapter Specifications

13.6.1 AFC8503/AFC8503S

(Unit: mm)


13.6.2 AFC8513

(Unit: mm)


FP0

,

13.6.4 AFC85305/AFC8531/AFC8532 (For extending for the tool port)

(Unit: mm)

13.7 Connection (between RS232C port and PC)

Connection example

FP0 RS	232C port		PC (D–SU (DOS/V ve	B 9–pin female) ersion)
Pin No.	Signal name		Pin No.	Signal name
S	SD		1	CD
R	RD	< →	2	RD
G	SG		3	SD
			4	ER
			5	SG
		>	6	DR
			7	RS
			8	CS

13.7 Connection (between RS232C port and PC)

Appendix

Appendix14-1
 14.1 System Registers / Special Internal Relays / Special Data Registers 14-3 14.1.1 Table of System Registers for FP0
14.1.3 Table of Special Data Registers for FP0
14.3 Table of High-level Instructions14-3614.4 Table of Error codes14-56
14.5 MEWTOCOL-COM Communication Commands14-6914.6 Hexadecimal/Binary/BCD14-70
14.7 ASCII Codes 14-71

14-2

14.1 System Registers / Special Internal Relays / Special Data Registers

Precation for System Registers

What is the system register area

- System registers are used to set values (parameters) which determine operation ranges and functions used. Set values based on the use and specifications of your program.
- There is no need to set system registers for functions which will not be used.

Type of system registers

The registers to be used depend on each PLC.

(1) Allocation of user memory (System registers 0, 1 and 2)

These registers set the size of the program area and file register area, allowing the user memory area to be configured for the environment used. The size of the memory area will vary depending on the type.

(2) Allocation of timers and counters (System register 5)

The number of timers and counters is set by specifying the starting counter number.

(3) Hold/non-hold type setting (System registers 6 to 18)

When these registers are set to "hold type", the values in the relays and data memory will be retained even if the system is switched to PROG. mode or the power is turned off. If set to "non-hold type", the values will be cleared to "0".

(4) Operation mode setting on error (System registers 4, 20 to 28)

Set the operation mode when errors such as battery error, duplicated use of output, I/O verification error and operation error occur.

(5) Time settings (System registers 30 to 34)

Set time-out error detection time and the constant scan time.

(6) Remote I/O operation settings (System registers 35 and 36)

These registers are used to select whether or not to wait for a slave station connection when the remote I/O is started, and the remote I/O update timing.

(7) MEWNET-W0/MEWNET-W/P PLC link settings (System registers 40 to 47, 50 to 55, and 57)

These settings are for using link relays and link registers for MEWNET-W0/MEWNET-W/P PC(PLC) link communication.

Note) The default value setting is "no PC(PLC) link communication".

(8) MEWNET-H PC(PLC) link settings (System register 49)

Set the data size to be processed during one scan in the MEWNET-H PC(PLC) link communication.

(9) Input settings (System registers 400 to 406)

When using the high-speed counter function, pulse catch function or interrupt function, set the operation mode and the input number to be used for the function.

(10) Input time constant settings (FP1/FP-M System registers 404 to 407)

Changing the input signal width to be loaded enables to prevent the malfunctions caused by chattering or noises.

(11) Number of temperature input averaging process settings (System register 409)

The number of averaging times can be set in order to even out the variation in the input thermocouple values. For normal use it, set the number of times to t least twenty. For default value "0", the number of average processing times is 20.

(12) Tool and COM. ports communication settings (System registers 410 to 421)

Set these registers when the Tool port, and COM1 and COM2 ports are to be used for computer link, general-purpose serial communication, PC(PLC) link, and modem communication. Note that the default setting is computer link mode.

Checking and changing the set value of system register

If you are going to use a value which is already set(the value which appears when read), there is no need write it again.

Using programming tool software Produce:

- 1. Set the control unit in the PROG mode.
- 2.Option ->PLC Configuration

3.When the function for which setting are to be entered is selected in the PLC Configuration dialog box, the value and setting status for the selected system register are displayed.

To change the value and setting status, write in the new value and /or select the setting status.

4.To register these settings, choose OK

Precautions for system register setting

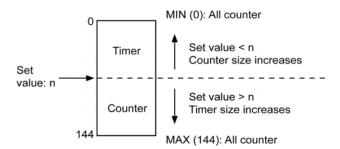
-System register settings are effective from the time they are set.

However, input settings,tool port,COM port,and modem connection settings become effective when the mode is changed from PROG. to RUN. With regard to the modem connection setting, when the power is turned off and on or when the mode is changed from PROG. to RUN, the controller sends a command to the modem which enables it for reception.

-When the initialized operation is performed, all set system register values (parameters) will be initialized

14.1.1 Table of System Registers for FP0

Content of system register settings


1. Setting the timers and counters (System register 5)

By indicating the counter start number, the timer and counter are split into two areas. The timer and counter together total 144 points, and the default value for th split is 100. Thus the point allotment is as shown in the table below.

Timer 100 points (No. 0 to No. 99)			
Counter	44 points (No. 100 to No. 143)		

Setting example

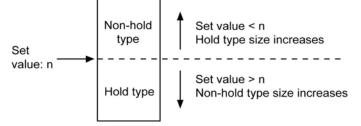
To increase the number of timers to 120, change the value of system register 5 to K120.

For T32, set the system registers 5 and 6 to the same value. This sets the timer to a non-hold type and counter to a hold type.

By setting system register 5 to "0", the whole area becomes the counter. Also, by setting it to the value "144", the whole area becomes the timer.

2. Hold types and non-hold type settings (System registers 6 to 8 and 14)

With the C10/C14/C16/C32/SL1, the areas held in the event of a power supply interruption are fixed at the areas shown in the table below, and the settings for system registers 6 to 8 and 14, will be invalid.


C10/C14/C16

Timer	Non-hold type: All points			
Counter	Non-hold type: From the set value to C139			
Counter	Hold type: 4 points (elapsed values)C140 to C143			
Internal relay	Non-hold type:	976 points (R0 to R60F)		
		61 words (WR0 to WR60)		
	Hold type:	32 points (R610 to R62F)		
		2 words (WR61 to WR62)		
Data register	Non-hold type: 1652 words (DT0 to DT1651)			
Data register	Hold type: 8 words (DT1652 to DT1659)			

C32/SL1

Timer	Non-hold type: All points			
Counter	Non-hold type: From the set value to C127			
Counter	Hold type: 16 points (elapsed values)C128 to C143			
Internal relay	Non-hold type:	880 points (R0 to R54F)		
		55 words (WR0 to WR54		
	Hold type:	128 points (R550 to R62F)		
		8 words (WR55 to WR62)		
Data register	Non-hold type: 6112 words (DT0 to DT6111)			
Data register	Hold type: 32 words (DT6112 to DT6143)			

With the T32, set each relay and register to a hold type or non-hold type.

For normal situations, set the system registers 5 and 6 to the same value. This sets the timer to a nonhold type and counter to a hold type.

By setting this value to "0", the whole area becomes hold type. Also, by setting it to the valeu 1 higher than the last number, the whold area becomes non-hold type.

Area	Туре	T32		
Timer		All non-hold type		
Counter		All hold type		
Internal	Non-hold type	Non-hold type: 10 words (WR0 to WR9)		
relay Hold type		Hold type: 53 words (WR10 to WR62)		
Data regi	ster	All hold type		

Table of system registers

C10, C14, C16, C32, T32 and SL1 in the table respectively indicate 10-point, 14-point, 16-point, 32-point type and S-LINK type FP0 control units.

Item	Add- ress	Name	Default value	Descriptions		
Alloca- tion of user memory	0	Sequence program area capacity	-	The set values are fixed and cannot be changed. The stored values vary depending on the type. K3: 3K words (C10, C14, C16) K5: 5K words (C32, SL1) K10: 10K words (T32)		
	5	Timer and counter division (setting of starting counter number)	100 (K100)	0 to 144 (K0 to K144)	Set the system	
Hold/ Non- hold	6	Hold type area starting number setting for timer and counter (Available type: T32)	100 (K100)	0 to 144 (K0 to K144)	registers 5 and 6 to the same value.	
	7	Hold type area starting number setting for internal relays (in word units) (Available type: T32)	10 (K10)	0 to 63 (K0 to K63)		
	8	Hold type area starting number setting for data registers (Available type: T32)	0 (K0)	0 to 16384 (K0 to K16384)		
	14	Hold or non-hold setting for step ladder process (Available type: T32)	Non-hold (K1)	Hold (K10) Non-hold (K1)		
	20	Disable or enable setting for duplicated output	Disable (K0)	Disable (will be syntax error) (K0) Enable (will not be syntax error) (K1)		
Action on error	23	Operation setting when an I/O verification error occurs	Stop (K0)	Stop (K0) Operate (K1)		
	26	Operation setting when an operation error occurs	Stop (K0)	Stop (K0) Operate (K1)		
	27	Operation settings when communication error occurs in the remote I/O (S-LINK) system	Operate (K1)	Stop (K0) Operate (K1)		

Note) The setting values of the system registers No. 6, 7, 8 and 14 becomes invalid with the types other than T32.

-	م
F	Pυ

Item	Add- ress	Name		Default value		Descriptions
	31	multi-frame	it time setting for Iti-frame mmunication		10 ms to 81900 ms (K4 to K32760) Used of default setting (K2600/6500 ms) is recommended. set value × 2.5 ms = Wait time setting for multi-frame communi- cation (ms)	
Time						time (a number divisible by 2.5). In FP Programmer II, enter the set value (equal to the time divided by 2.5).
setting	34	Constant value settings for scan time 0 ms (K0) 0 ms (K0) set value × 2.5 ms = Constant for multi-locommuni communi for multi-locommuni communi for multi-locommuni for mu		hs to 160 ms (K1 to K64): Scans each specified time interval.)):Normal scan alue × 2.5 ms = Constant value setting for multi-frame communication (ms) f In programming tool software, enter the time (a number divisible by 2.5). In FP Programmer II, enter the set value (equal to the time divided by 2.5).		
Input setting	400	High-speed counter mode settings (X0 to X2) Setting by progra- mming tool software	Do not set X0 as high- speed counter.	СНО	Do not set X0 as high-speed counter. 2-phase input (X0, X1) 2-phase input (X0, X1), Reset input (X2) Incremental input (X0) Incremental input (X0), Reset input (X2) Decremental input (X0), Reset input (X2) Individual input (X0, X1) Individual input (X0, X1), Reset input (X2) Direction decision (X0, X1), Reset input (X2)	
			Do not set X1 as high- speed counter.	CH1	Do not set X1 as high-speed counter. Incremental input (X1) Incremental input (X1), Reset input (X2) Decremental input (X1) Decremental input (X1), Reset input (X2)	

Note1) If the operation mode is set to 2-phase, individual, or direction differentiation, the setting for CH1 is invalid.

Note2) If reset input settings overlap, the setting of CH1 takes precedence.

Note3) If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] '[Pulse catch]' [Interrupt input].

FP0						
ltem	Add- ress	Name		Default value		Descriptions
Input setting	400	High- speed counter mode settings (X0 to X2)	Setting by FP pro- grammer II	НО	CH0/ CH1	H 0 0 Image: Construct of the system of the sys

Note1) If the operation mode is set to 2-phase, individual, or direction differentiation, the setting for CH1 is invalid.

Note2) If reset input settings overlap, the setting of CH1 takes precedence.

Note3) If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] '[Pulse catch]' [Interrupt input].

E	DN
	гυ

ltem	Add- ress	Nan	ne	Default value	Descriptions	
				Do not set X3 as high- speed counter.	CH2	Do not set X3 as high-speed counter. 2-phase input (X3, X4) 2-phase input (X3, X4), Reset input (X5) Incremental input (X3) Incremental input (X3), Decremental input (X3), Decremental input (X3), Reset input (X5) Individual input (X3, X4) Individual input (X3, X4), Reset input (X5) Direction decision (X3, X4), Reset input (X5)
				Do not set X4 as high- speed counter.	СНЗ	Do not set X4 as high-speed counter. Incremental input (X4) Incremental input (X4), Reset input (X5) Decremental input (X4) Decremental input (X4), Reset input (X5)
Input setting	401	High- speed counter mode settings (X3 to X5)	Setting by progra- mming tool soft- ware	HO	CH2/ CH3	H O O O: Do not use high-speed counter. 1: 2-phase input (X3, X4) 2: 2-phase input (X3, X4), Reset input (X5) 3: Incremental input (X3) 4: Incremental input (X3) 4: Incremental input (X3) 6: Decremental input (X3) 6: Decremental input (X3) 7: Individual input (X3, X4) 8: Individual input (X3, X4), Reset input (X5) 9: Direction decision (X3, X4), Reset input (X5) 9: Direction decision (X3, X4), Reset 10: Do not use high-speed counter. 3: Incremental input 3: Incremental input (X4) 4: Incremental input (X4) 6: Decremental input (X4) 6: Decremental input (X4) 7: Decremental input (X4) 8: Decremental input (X4) 9: Decremental input (X4)

Note1) If the operation mode is set to 2-phase, individual, or direction differentiation, the setting for CH3 is invalid.

Note2) If reset input settings overlap, the setting of CH3 takes precedence.

Note3) If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter] '[Pulse catch]' [Interrupt input].

Add- ress	Name	Default value	Descriptions
402	Pulse catch input function settings	Not set (H0)	X0 X1 X2 X3 X4 X5 The checked contacts are set as pulse catch input. In FP Programmer II, enter the above settings in hexadecimal. Example: When X3 and X4 are set as pulse catch input 15 0 No.402: 15 0 10 0 10 0 11 0 0 0 11 0 10 0 15 10 10 10 10 10 10 10 10
403	Interrupt input settings	Not set (H0)	Using FPWIN GR $x_0 \times 1 \times 2 \times 3 \times 4 \times 5$ The checked contacts are set as interrupt input. $x_0 \times 1 \times 2 \times 3 \times 4 \times 5$ Specify the effective interrupt edge. (When set: ON \rightarrow OFF is valid) Using FP Programmer II Example: When setting inputs X0, X1, X2 and X3 as interrupts, and X0 and X1 are set as interrupts, and X0 and X1 are set as interrupt inputs when going from on to off. Specify Specify edge interrupt 15 0 No.403: 000011001111 $x_{5X4}x_{3}x_{2}x_{1}x_{0}$ H0 H3 H0 HF Input H30F
	402	ress Name 402 Pulse catch input function settings	ress Name value 402 Pulse catch input function settings Not set (H0)

Note1) With the TOOL software, "0" or "1" is set for each bit on the screen in the setting for system register 403.

Note2) If system register 400 to 403 are set simultaneously for the same inptu relay, the following precedence order is effective:

[High-speed counter] '[Pulse catch]' [Interrupt input].

When the high-speed counter is being used in the incremental input mode, even if input X0 is specified as an interrupt input and as pulse catch input, those settings are invalid, and input X0 functions as counter input for the high-speed counter.

No. 400: H1 a This setting will be valid. No. 402: H1 No. 403: H1

FP0

14-12

FP0 Item	Add-	Nam	e	Default	Descriptions
	ress 410	Unit No. setting port (when cor NET)	g for tool	value 1 (K1)	1 to 32 (K1 to K32)
Tool port setting	411	Communicatio setting for tool	port	Modem: Disabled Data length: 8 bits (H0)	Using FPWIN GR Modem: Disable/Enable Data length: 7 bits/8 bits Using FP programmer II Specify the setting contents using H constants. 15 6 0 Modem communication 0: Disabled 1: Enabled Data lenght (character bits) 0: 8 bits 1: 7 bits When connecting a modem, set the unit number to 1 with system register 410.
	414	Baud rate setting			0: 9600 bps 1: 19200 bps
Tool port/ RS232C port setting	414	Baud rate setting for tool port and RS232C port	Setting by FP pro- grammer II	H1	H O O Tool port H0: 9600 bps H1: 9200 bps H1: 9200 bps H1: 9200 bps H1: 9600 bps H1: 9600 bps H1: 9600 bps H1: 9200 bps H2: 4800 bps H3: 2400 bps H4: 1200 bps H4: 1200 bps H5: 600 bps H6: 300 bps H

_	
F	PN.
	10

FP0	Add-	Name	Default	Descriptions
	412	Selection of operat	ion Not used (K0)	Using FPWIN GR Not used Computer link General-purpose communication Using FP programmer II K0: RS232C port is not used. K1: Computer link mode (when connecting C-NET) K2: Serial data communication mode (general port)
RS232C port setting	413	Communication for	Start code: None Terminal code: CR Stop bit: 1 bit Paritycheck: With odd Data length: 8 bits (H3)	Using FPWIN GR - Data length: 7 bits/8bits - Parity check: None/Odd/Even - Stop bit: 1/2 * The following setting is valid only when the communication mode specified by system register 412 has been set to "General-purpose serial communication". - Terminator CR/CR+LF/None/ETX - Start code: STX not exist/STX exist Using FP programmer II Specify the setting contents using H constants. <u>Start code 0: No STX 1: STX</u> Terminal code 00: CR 01: CR+LF 10: None 11: ETX <u>Stop bit 0: 1 bit 1: 2 bits</u> Parity check 00: None 01: With odd 11: With even Data length 0: 7 bits 1: 8 bits
	414 Baud Setting by 414 rate programming setting tool software		ning	19200 bps 9600 bps 4800 bps 2400 bps 1200 bps 600 bps 300 bps
	415	Unit no. (when connecting C-NET)	1 (K1)	1 to 32 (K1 to K32)
	416	Modem connection	Disable	Using FPWIN GR Diable/Enable Using FP programmer II H0: Modem disabled H8000: Modem enabled

ltem	Add- ress	Na	me	Default value	Descriptions
	417	Starting address setting for received buffer		0 (K0)	C10C/C14C/C16C: 0 to 1659 (K0 to K1659) C32C/SL1: 0 to 6143 (K0 to K6143) T32C: 0 to 16383 (K0 to K16383)
		Capacity	C10C/C14 C/C16C	1660 (K1660)	0 to 1660 (K0 to K1660)
	418	setting for reception	C32C/SL1	6144 (K6144)	0 to 6144 (K0 to K6144)
	buffer	T32C	16384 (K16384)	0 to 16384 (K0 to K16384)	

14.1.2 Table of Special Internal Relays for FP0

The special internal relays turn on and off under special conditions. The on and off states are not output externally. Writing is not possible with a programming tool or an instruction.

FP0		
Address	Name	Description
R9000	Self-diagnostic error flag	Turns on when a self-diagnostic error occurs. The self-diagnostic error code is stored in DT9000.
R9001 to R9003	Not used	-
R9004	I/O verification error flag	Turns on when an I/O verification error occurs. The position number of the I/O where the verification error was occurred is stored in DT9010.
R9005, R9006	Not used	-
R9007	Operation error flag (hold)	Turns on and keeps the on state shen an operation error occurs. The address where the error occurred is stored in DT9017. (Indicates the first operation error which occurred).
R9008	Operation error flag (non-hold)	Turns on for an instant when an operation error occurs. The address where the operation error occurred is stored in DT9018. The contents change each time a new error occurs.
R9009	Carry flag	Turns on for an instant, - when an overflow or underflow occurs. – when "1" is set by one of the shift instructions.
R900A	> Flag	Turns on for an instant when the compared results become larger in the "F60 (CMP) to F63 (DWIN) comparison instructions."
R900B	= Flag	 Turns on for an instant, when the compared results are equal in the comparison instructions (F60 to F63). when the calculated results become 0 in the arithmetic instructions.
R900C	< Flag	Turns on for an instant when the compared results become smaller in the "F60 (CMP) to F63 (DWIN) comparison instructions.
R900D	Auxiliary timer contact	Turns on when the set time elapses (set value reaches 0) in the timing operation of the F137(STMR)/F183(DSTM) auxiliary timer instruction. It turns off when the trigger for auxiliary timer instruction turns off.
R900E	Tool port error flag	This turns on when an error occurs during communication with a programming tool.
R900F	Constant scan error flag	Turns on when the scan time exceeds the time specified in system register 34 during constant scan execution.
R9010	Always on relay	Always on.
R9011	Always off relay	Always off.
R9012	Scan pulse relay	Turns on and off alternately at each scan.

-PO	News	Description
Address	Name	Description
R9013	Initial on pulse relay	Turns on only at the first scan in the operation.
		Turns off from the second scan and maintains the off state.
R9014	Initial off pulse relayStep ladder initial on pulse relayNot used0.01 s clock pulse relay0.02 s clock pulse	Turns off only at the first scan in the operation.
	. ,	Turns on from the second scan andmaintains the on state.
R9015	-	Turns on for an instant only in the first scan of the process
	puise relay	the moment step ladder process is opened.
R9016,	Not used	-
R9017		
R9018	0.01 s clock pulse	Repeats on/off operations in 0.01 s
1,3010	relay	cycles.
R9019	-	Repeats on/off operations in 0.02 s
	relay	cycles.
R901A	0.1 s clock pulse relay	Repeats on/off operations in 0.1 s
		cycles.
R901B	0.2 s clock pulse relay	Repeats on/off operations in 0.2 s
		cycles.
		Repeats on/off operations in 1 s
R901C	1 s clock pulse relay	and a st
R901D	2 s clock pulse relay	Repeats on/off operations in 2 s
		cycles.
	1 min clock pulse	Repeats on/off operations in 1 min
R901E	relay	
		cycles.
R901F	Not used	-
R9020	RUN mode flag	Turns off while the mode selector is set to PROG.
D0004 (-		Turns on while the mode selector is set to RUN.
R9021 to	Not used	-
R9025		
R9026	Message flag	Turns on while the F149 (MSG) instruction is executed.
(*Note)		
R9027	Remote mode flag	Turns on while the mode selector is set to REMOTE.
(*Note)		
R9028	Not used	-

Note) Used by the system.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

FP0			
Address	Name		Description
R9029 (*Note)	Forcing flag		Turns on during forced on/off operation for input/output relay timer/counter contacts.
R902A	External interrupt		Turns on while the external interrupt trigger is enabled by
(*Note)	enable flag		the ICTL instruction.
R902B (*Note)	Interrupt error flag	g	Turns on when an interrupt error occurs.
R902C to R902F	Not used		-
R9030, R9031	Not used		-
R9032	RS232C port mod flag	le	When "General-use port" is selected, "K2" goes on.
R9033	Printout instruction	on	Turns on while a F147 (PR) instruction is executed.
1.3033	flag		Turns off when a F147 (PR) instruction is not executed.
R9034	Rewrite during RU flag	Л	This is a special internal relay that goes on for only the first scan following the completion of rewriting in the RUN mode. (CPU Ver. 2.1 or later available)
R9035	S-LINK I/O commo cation error flag	uni-	Turns on when the S-LINK error (ERR 1, 3 or 4) occurs using S-LINK system.
R9036	S-LINK communion tion status flag	ca-	Turns on when communication is taking place with an S- LINK input/Ooutput unit.
R9037	RS232C communica- tion error flag		Turns on when the serial data communication error occurs.
R9038	RS232C reception completed flag	ו	Turns on when a terminator is received during the serial data communicating.
R9039	RS232C transmis completed flag	sion	Turns on while data is not send during the serial data communicating. Turns off while data is being sent during the serial data communicating.
R903A	High-speed counter control flag	ch0	Turns on while the high-speed counter instructions F166(HC1S) to F170(PWM) are executed.
R903B	High-speed counter control flag	ch1	Turns on while the high-speed counter instructions F166(HC1S) to F170(PWM) are executed.
R903C	High-speed counter control flag	ch2	Turns on while the high-speed counter instructions F166(HC1S) to F170(PWM) are executed.
R903D	High-speed counter control flag	ch3	Turns on while the high-speed counter instructions F166(HC1S) to F170(PWM) are executed.
R903E, R903F	Not used		-

Note) Used by the system.

14.1.3 Table of Special Data Registers for FP0

The special data registers are one word (16-bit) memory areas which store specific information. With the exception of registers for which "Writing is possible" is indicated in the "Description" column, these registers cannot be written to.

Add	ress		
FP0 T32	FP0 C10, C14, C16, C32, SL1	Name	Descriptions
DT90000	DT9000	Self-diagnostic error code	The self-diagnostic error code is stored here when a self-diagnostic error occurs. Monitor the error code using decimal display.
DT90010	DT9010	I/O verify error unit	The position of the I/O for which an error occurred is stored in bits 0 to 3.
DT90014	DT9014	Auxiliary register for operation	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when F105 (BSR) or F106 (BSL) instruction is executed.
DT90015	DT9015	Auxiliary register for	The divided remainder (16-bit) is stored in DT9015/DT90015 when F32(%) or F52(B%) instruction is executed. The divided remainder (32-bit) is stored in
DT90016	DT9016	operation	DT9015 and DT9016/DT90015 and DT90016 when F33(D%) or F53(DB%) instruction is executed.
DT90017	DT9017	Operation error address (hold)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display.
DT90018	DT9018	Operation error address (non-hold)	The address where an operation error occurred is stored. Each time an error occurs, the new address overwrites the previous address. At the beginning of scan, the address is 0. Monitor the address using decimal display.
DT90019	DT9019	2.5 ms ring counter	The data stored here is increased by one every 2.5 ms. (H0 to HFFFF) Difference between the values of the two points (absolute value) x 2.5 ms = Elapsed time between the two points.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Add	Iress		
FP0 T32	FP0 C10, C14, C16, C32, SL1	Name Name	Descriptions
-	DT9020 (Availabl e type: SL1)	S-LINK status flag/error flag	15 5 4 3 2 1 DT9020 → Not used → ↓

Add	Iress		
FP0 T32	FP0 C10, C14, C16, C32, SL1	Name	Descriptions
-	DT9021 (Availabl e type: SL1)	No. of units connected to S-LINK/error address	(When normal) 15 8 7 6 5 4 3 2 1 0 DT9021 No. of units connected: 0 0 to128 (0 to H80) Note - When the SET switch is pressed, the number of input/output units connected to the S-LINK system is set. (If the same address has been specified for multiple units, the units are counted as a single unit. This is invalid, however, if an ERR4 error is in progress.) (If ERR4 occurs) 15 8 7 6 5 4 3 2 1 0 DT9021 Unit address 0 to 127 (0: Single, 1: Multiple) Error address 0 to 127 (0 to H7F) (Initial address if there are multiple errors)
DT90022	DT9022	Scan time (current value) (*Note)	The current scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) x 0.1 K50 indicates 5 ms.

Scan time display is only possible in RUN mode, and shows the operation cycle time. The maximum and minimum values are cleared when each the mode is switched between RUN mode and PROG. mode.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

bbA	ress		
FP0 T32	FP0 C10, C14, C16, C32, SL1	Name	Descriptions
DT90023	DT9023	Scan time (minimum value) (*Note1)	The minimum scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) x 0.1 ms Example: K50 indicates 5 ms.
DT90024	DT9024	Scan time (maximum value) (*Note 1)	The maximum scan time is stored here. The scan time is calculated using the formula: Scan time (ms) = stored data (decimal) x 0.1 ms Example: K125 indicates 12.5 ms.
DT90025 (*Note2)	DT9025 (*Note2)	Mask condition monitoring register for interrupts (INT 0 to 5)	The mask conditions of interrupts using ICTL instruction can be monitored here. Monitor using binary display. 15 11 7 3 0 (Bit No.) 23 19 16 (INT No.) 0: Interrupt disabled (masked) 1: Interrupt enabled (unmasked)
DT90026	DT9026	Not used	-
DT90027 (*Note2)	DT9027 (*Note2)	Periodical interrupt interval (INT24)	The value set by the ICTL instruction is stored. K0: periodical interrupt is not used. K1 to K3000: 10ms to 30s
DT90028	DT9028	Not used	-
DT90029 DT90030 (*Note2) DT90031 (*Note2) DT90032 (*Note2) DT90033 (*Note2) DT90034 (*Note2) DT90035 (*Note2)	DT9029 DT9030 (*Note2) DT9031 (*Note2) DT9032 (*Note2) DT9033 (*Note2) DT9034 (*Note2) DT9035 (*Note2)	Not used Character storage by F149 MSG instruction	The contents of the specified message are stored in these special data registers when F149 (MSG) instruction is executed.
DT90036	DT9036	Not used	-
DT90037	DT9037	Work 1 for F96 (SRC) instruction	The number of data that match the searched data is stored here when F96 (SRC) instruction is executed.

Note1) Scan time display is only possible in RUN mode and shows the operation cycle time. The maximum and minimum values are cleared when each mode is switched between RUN mode and PROG. mode.

Note2) Used by the system.

Add	ress							
FP0 T32	FP0 C10, C14, C16, C32, SL1	Name	Descriptions					
DT90038	DT9038	Work 2 for F96 (SRC) instruction	The position of the first matching data, counting from the starting 16-bit area, is stored here when an F96 (SRC) instruction is executed.					
DT90039 to DT90043	DT9039 to DT9043	Not used	-					
DT90044	DT9044	High-speed counter elapsed value for ch0	The elapsed value (24-bit data) for the high- speed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred					
DT90045	DT9045	(*Note1)	to the special registers DT9044 and DT9045/DT90044 and DT90045. The value can be written by executing F1 (DMV) instruction.					
DT90046	DT9046	High-speed counter	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various					
DT90047	DT9047	(*Note1)	instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.					
DT90048	DT9048	High-speed counter elapsed value area for	The elapsed value (24-bit data) for the high- speed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred					
DT90049	DT9049	ch1 (*Note1)	to the special registers DT9048 and DT9049/DT90048 and DT90049. The value can be written by executing F1 (DMV) instruction.					
DT90050	DT9050	High-speed counter target value area for	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various					
DT90051	DT9051	ch1 (*Note1)	instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.					

Note1) In the FP0 compatibility mode of FP0R, it is 32-bit data.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Add	ress		
FP0 T32	FP0 C10, C14, C16, C32, SL1	Name	Descriptions
DT90052	DT9052	High-speed counter control flag	A value can be written with F0 (MV) instruction to reset the high-speed counter, disable counting, stop high-speed counter instruction (F168), and clear the high-speed counter. Control code setting Control code = Sortware reset 0: Yes/1: Disable Count 0: Enable/1: Disable Hardware reset 0: Continue/1: Clear Software is not reset: H0 (0000) Perform software reset: H1 (0001) Disable count: H2 (0010) Disable hardware reset: H4 (0100) Stop pulse output (clear instruction): H8 (1000) Perform software reset and stop pulse output: H9 (1001) The 16 bits of DT9052/DT90052 are allocated in groups of four to high-speed channels 0 to 3 as shown below.
DT90053	-	Real-Time Clock (Clock/Calendar) monitor (hour/minute)	Hour and minute data of the Real-Time Clock (Clock/Calendar) are stored here. This data is read-only data; it cannot be overwritten. Higher 8 bits Lower 8 bits Hour data Minute data Hour data Minute data Hou to H23 (BCD) HO0 to H59 (BCD)

14-23

Add	ress									
FP0 T32	FP0 C10, C14, C16, C32, SL1	Name	Descriptions							
DT90054	-	Real-Time Clock (Clock/Calendar) monitor and setting (minute/second)	day-of-the-v (Clock/Cale Time Clock correctly thr	week data for the l ndar) is stored. Th (Clock/Calendar) ough the year 209	ne built-in Real- will operate 99 and supports					
DT90055	-	Real-Time Clock (Clock/Calendar) monitor and setting (day/hour)	(Clock/Cale writing a va	The Real-Time Cl ndar) can be set (lue using a progra a program that us	the time set) by mming tool					
DT90056	-	Real-Time Clock (Clock/Calendar) monitor and setting (year/month)		Higher 8 bits	Lower 8 bits					
			DT90054		H00 to H59 (BCD)					
			DT90055	Day data H01 to H31 (BCD)	Hour data H00 to H23 (BCD)					
		Real-Time Clock (Clock/Calendar)	Month data H01 to H12 (BCD)							
DT90057	-	monitor and setting	DT90057	_	Day-of-the-week data H00 to H06 (BCD)					
		(day-of-the-week)	As a day of the week is not automatially set on FPWIN GR, fix what day is set to 00, and set each value for 00 to 06.							

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

bbA	ress		
	FP0 C10,		
FP0 T32		Name	Descriptions
FP0 T32	C14, C16, C32, SL1	Real-Time Clock (Clock/Calendar) time setting and 30 seconds correction	DescriptionsThe Real-Time Clock (Clock/Calendar) by programBy setting the Real-Time Clock(Clock/Calendar) by programBy setting the highest bit of DT90058 to 1, thetime becomes that written to DT90054 toDT90057 by F0 (MV) instruction. After the timeis set, DT90058 is cleared to 0. (Cannot beperformed with any instruction other than F0(MV) instruction.Example:Set the time to 12:00:00 on the 5 th day when the X0 turns on.X0Inputs 0 min, and 0 second.Inputs 0 min, and 0 second.Imputs 0 min,
			and, if the time was 5 minutes 35 seconds, it will become 6 minutes 0 second.
Note) After d	lischarging th	e battery (including when the	e power is turned on for the first time), the values of

Note) After discharging the battery (including when the power is turned on for the first time), the values of DT90053 to DT90058 change at random. Once the time and date have been set, these values will function normally.

14-25

Add	ress									
FP0 T32	FP0 C10, C14, C16, C32, SL1	Na	me	Descriptions						
DT90059	DT9059	Serial comn error code	nunication	- Tool port bit 0=1: Over run error bit 2=1: Parity error - RS232C port - RS232C port bit 0=1: Over run error bit 2=1: Parity error - RS232C port bit 8=1: Over run error bit 9=1: Framing error bit 10=1: Parity error						
DT90060	DT9060		Process number: 0 to 15							
DT90061	DT9061		Process number: 16 to 31	Indicates the startup condition of the step ladder process. When the process starts up, the bit						
DT90062	DT9062		Process number: 32 to 47	corresponding to the process number turns on"1".						
DT90063	DT9063	Step	Process number: 48 to 63	Monitor using binary display.						
DT90064	DT9064	ladder process	Process number: 64 to 79	DT9060 DT90060 15 11 7 3 0 (Bit No.) DT90060 15 11 7 3 0 (Process No.)						
DT90065	DT9065		Process number: 80 to 95	1: executing 0: not-executing						
DT90066	DT9066		Process number: 96 to 111	A programming tool software can be used to write data.						
DT90067	DT9067		Process number: 112 to 127							

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Address									
FP0 T32	FP0 C10, C14, C16, C32, SL1	Name	Descriptions						
DT90104	DT9104	High-speed counter elapsed value area for	The elapsed value (24-bit data) for the high- speed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred						
DT90105	DT9105	ch2 (*Note1)	to the special registers DT9104 and DT9015/DT90104 and DT90105. The value can be written by executing a DMV (F1) instruciton.						
DT90106	DT9106	High-speed counter target value area for	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various						
DT90107	DT9107	ch2 (*Note1)	instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.						
DT90108	DT9108	High-speed counter elapsed value area for	The elapsed value (24-bit data) of the high- speed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high-speed counter is automatically transferred						
DT90109 DT9109		ch3 (*Note1)	to the special registers DT9108 and DT9109/DT90108 and DT90109. The value can be written by executing a DMV (F1) instruction.						
DT90110	DT9110	High-speed counter target value area for	The target value (24-bit data) of the high-speed counter specified by the high-speed counter instruction is stored here. Target values have been preset for the various						
DT90111	DT9111	ch3 (*Note1)	instructions, to be used when the high-speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.						

Note1) In the FP0 compatibility mode of FP0R, it is 32-bit data.

14.2 Table of Basic Instructions

Name	Boolean	Symbol	Description	Steps *3	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
	pasic instruc					1				r	-
Start	ST	X, Y, R, T, C, L, P, E	Begins a logic operation with a Form A (normally open) contact.	1 (2)	a	a	a	0	0	a	C
Start Not	ST/	X, Y, R, T, C, L, P, E	Begins a logic operation with a Form B (normally closed) contact.	(2) 1 (2)	a	a	a	a	a	a	C
Out	от	Y, R, L, E	Outputs the operated result to the specified output.	(2) 1 (2)	a	a	a	O	a	a	C
Not	1	/	Inverts the operated result up to this instruction.	1	a	a	a	a	a	a	С
AND	AN	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact serially.	1 (2)	a	a	a	a	a	a	С
AND Not	AN/	X, Y, R, T, C, L, P, E	Connects a Form B (normally closed) contact serially.	(2) 1 (2)	a	a	a	a	a	a	С
OR	OR	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact in parallel.	(<u>2</u>) (2)	a	0	a	O	a	a	С
OR Not	OR/	X, Y, R, T, C, L, P, E	Connects a Form B (normally closed) contact in parallel.	(<u></u>) (2)	a	a	a	0	a	a	С
Leading edge start	sт↑	X, Y, R, T, C, L, P, E	Begins a logic operation only for one scan when the leading edge of the trigger is detected.	2	×	×	a	∆ *2	∆ *2	a	С
Trailing edge start	st↓	X, Y, R, T, C, L, P, E	Begins a logic operation only for one scan when the trailing edge of the trigger is detected.	2	×	×	a	∆ *2	∆ *2	a	С
Leading edge AND	AN↑	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact serially only for one scan when the leading edge of the trigger is detected.	2	×	×	a	∆ *2	∆ *2	a	С
Trailing edge AND	an↓	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact serially only for one scan when the trailing edge of the trigger is detected.	2	×	×	a	∆ *2	∆ *2	a	С
Leading edge OR	OR↑	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact in parallel only for one scan when the leading edge of the trigger is detected.	2	×	×	a	∆ *2	∆ *2	a	С
Trailing edge OR	OR↓	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact in parallel only for one scan when the trailing edge of the trigger is detected.	2	×	×	a	∆ *2	∆ *2	a	С
Leading edge out	от↑	[↑]	Outputs the operated result to the specified output only for one scan when leading edge of the trigger is detected. (for pulse relay)	2	×	×	×	×	×	a	С
Trailing edge out	от↓	[↓]	Outputs the operated result to the specified output only for one scan when trailing edge of the trigger is detected. (for pulse relay)	2	×	×	×	×	Х	a	С
Alterna- tive out	ALT	Y, R, L, E	Inverts the output condition (on/off) each time the leading edge of the trigger is detected.	3	\times	×	a	a	a	a	С
AND stack	ANS		Connects the multiple instruction blocks serially.	1	a	a	a	a	a	a	С
OR stack	ORS		Connects the multiple instruction blocks in parallel.	1	a	O	o	a	a	o	С

 \bigcirc : Available, \times : Not available, \triangle : Not available partially

*1) The type of the devices that can be specified depends on the models.

*2) This instruction is available for FP-X Ver. 2.0 or later, and FP Σ Ver. 3.10 or later.

*3) In the FP2/FP2SH/10SH, when using X1280, Y1280, R1120 (special internal relay included), L1280, T256, C256 or anything beyond for the ST, ST/, OT, AN, AN/, OR and OR/ instructions, the number of steps is shown in parentheses. Also, in the FP2/FP2SH/FP10SH, when a relay number has an index modifier, the number of steps is shown in parentheses. For the FPΣ and FP-X, the number of steps varies according to the relay number to be used.

Name	Boolean	Symbol	Description	Steps *5 *6	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
Push stack	PSHS	$\vdash \vdash \vdash \vdash$	Stores the operated result up to this instruction. *2	1	a	a	a	O	a	a	a
Read stack	RDS		Reads the operated result stored by the PSHS instruction. *2	1	a	O	a	O	O	O	a
Pop stack	POPS	4	Reads and clears the operated result stored by the PSHS instruction	1	a	Ο	a	O	Ο	a	Ο
Leading edge differential	DF	——(DF)—	Turns on the contact for only one scan when the leading edge of the trigger is detected.	1	a	Ο	a	a	O	a	O
Trailing edge differential	DF/	——(DF/)—	Turns on the contact for only one scan when the trailing edge of the trigger is detected.	1	a	O	a	a	a	a	a
Leading edge differ-ential (initial execution type)	DFI	(DFI)	Turns on the contact for only one scan when the leading edge of the trigger is detected. The leading edge detection is possible on the first scan.	1	×	×	a	O	α	a	O
Set	SET	Y, R, L, E	Output is set to and held at on.	3	O	0	O	a	a	0	a
Reset	RST	Y, R, L, E	Output is set to and held at off.	3	a	0	a	O	0	a	0
Кеер	KP		Outputs at set trigger and holds until reset trigger turns on.	1 (2)	a	Ο	a	O	O	O	σ
No operation	NOP	•	No operation.	1	0	Ο	0	0	0	O	0
Basic function ins		-							-		
On-delay timer	TML		After set value "n" x 0.001 seconds, timer contact "a" is set to on.	3 (4)	a	O	a	0	0	a	0 *3
	TMR	TMa, n	After set value "n" x 0.01 seconds, timer contact "a" is set to on.	3 (4)	a	0	a	0	O	a	⊂ *3
	тмх	+ + + +	After set value "n" x 0.1 seconds, timer contact "a" is set to on.	3 (4)	a	Ο	a	O	Ο	a	O *3
	ТМҮ		After set value "n" x 1 second, timer contact "a" is set to on.	4 (5)	a	Ο	a	0	0	a	0 *3
Auxiliary timer (16-bit)	F137 (STMR)	YRLE │ {{Fi37STMRS.D}}	After set value "S" x 0.01 seconds, the specified output and R900D are set to on.	5	a	Ο	a	a	a	a	a
Auxiliary timer (32-bit)	F183 (DSTM)	YRLE ┤ ҢF183DSTM.S.D.L]	After set value "S" x 0.01 seconds, the specified output and R900D are set to on.	7	a	Ο	a	a	O	a	O
Time constant processing	F182	[F182 FILTR \$1, \$2, \$3, D]	Executes the filter processing for the specified input.	9	х	Х	O	∆ *4	∆ *4	Х	×
Counter	СТ	Count Reset n	Decrements from the preset value "n"	3 (4)	a	a	a	⊂ *3	⊂ *3	a	□ *3

*1) The type of the devices that can be specified depends on the models.

*2) The allowable number of using the PSHS and RDS instruction depends on the models.

*3) For FP2SH, FP10SH and FP-X Ver2.0 or later, any device can be set for the setting value of counter or timer instruction.

*4) This instruction is available for FP-X Ver. 2.0 or later.

*5) In the FP2/FP2SH/FP10SH, when using Y1280, R1120 (special internal relay included), L1280 or anything beyond for the KP instruction, the number of steps is shown in parentheses. Also, in the FP2/FP2SH/FP10SH, when a relay number has an index modifier, the number of steps is shown in parentheses.

*6) In the FP2/FP2SH/FP10SH, when timer 256 or higher, or counter 255 or lower, is used, the number of steps is the number in parentheses. Also, in the FP2/FP2SH/FP10SH, when a timer number or counter number has an index modifier, the number of steps is the number in parentheses. For the FPΣ and FP-X, the number of steps varies according to the specified timer number or counter number.

Name	Boolean	Symbol	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
UP/DOWN counter	F118 (UDC)	UP/DOWN Count Reset Count	Increments or decrements from the preset value "S" based on up/donw input.	5	a	a	a	O	O	O	0
Shift register	SR	Data Shift Reset	Shifts one bit of 16-bit [word internal relay (WR)] data to the left.	1 (2) *1	a	a	a	O	a	a	a
Left/right shift register	F119 (LRSR)	L/R Data Shift Reset	Shifts one bit of 16-bit data range specified by "D1" and "D2" to the left or to the right.	5	a	a	a	a	a	a	a
Control instr	uctions	•									
Master control relay	MC	Master control area	Starts the master control program.	2	a	a	a	O	D	D	a
Master control relay end	MCE	(MOE n)	Ends the master control program.	2	a	a	a	O	a	a	a
Jump	JP LBL	(LBL n)-	The program jumps to the label instruction and continues from there.	2 (3) *2	a	a	a	a	a	a	a
Auxiliary jump Label	F19 (SJP)		The program jumps to the label instruction specified by "S" and continues from there.	1 3 1	×	×	×	×	×	a	a
Loop	LOOP	(LBL n)- 	The program jumps to the label instruction and continues from there (the number of jumps is set in "S").	4 (5) *3	a	a	a	a	a	a	a
Break	BRK	H H BRK)	Stops program execution when the predetermined trigger turns on in the TEST/RUN mode only.	1	×	×	×	×	×	a	a

*1) In the FP2/FP2SH/FP10SH, when internal relay WR240 or higher is used, the number of steps is the number in parentheses. Also, in the FP2/FP2SH/FP10SH, when the specified internal relay number (word address has an index modfier, the number of steps is the number in parentheses.

*2) In the FP2/FP2SH/FP10SH, when the number "n" in a jump instruction has an index modifier, the number of steps isthenumber in parentheses.

*3) In the FP2/FP2SH/FP10SH, when the number "n" in a loop instruction has an index modifier, the number of steps is the number in parentheses.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Name	Boolean	Symbol	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
End	ED	(ED)-	The operation of program is ended. Indicates the end of a main program.	1	a	O	a	a	O	0	a
Conditional end	CNDE		The operation of program is ended when the trigger turns on.	1	a	a	a	a	O	O	a
Eject	EJECT	(EJECT)-	Adds page break fo ruse when printing.	1	×	×	O	O	0	0	a
Step ladder in	nstructions					-					
Start step	SSTP	(SSTP n)-	The start of program "n" for process control	3	a	a	a	0	0	0	a
Next step	NSTL	(NSTL n)	Start the specified process "n" and clear the process currently started. (Scan execution type)	3	a	a	a	a	O	O	a
	NSTP	(NSTP n)-	Start the specified process "n" and clear the process currently started. (Pulse execution type)	3	a	a	O	a	a	O	a
Clear step	CSTP	CSTP n)-	Resets the specified process "n".	3	O	O	O	O	0	0	a
Clear multi- ple steps	SCLR		Resets multiple processes specified by "n1" and "n2".	5	a	Х	a	a	a	a	a
Step end	STPE	(STPE)-	End of step ladder area	1	O	O	O	a	0	0	a
Subroutine in	structions										
Subroutine call	CALL		When the trigger is on: Executes the subroutine. When the trigger is off: Not execute the subroutine. The output in the subroutine is maintained.	2 (3) *1	a	a	a	a	a	a	a
Output off type subroutine call	FCAL	(FCAL n)-	When the trigger is on: Executes the subroutine. When the trigger is off: Not execute the subroutine. But, the output in the subroutine is cleared.	4 (5) *1	×	×	х	Х	×	×	a
Subroutine entry	SUB	(SUB n)-	Indicates the start of the subroutine program "n".	1	a	a	a	a	a	O	a
Subroutine return	RET	(RET)	Ends the subroutine program.	1	a	a	a	a	a	a	a
Interrupt inst	ructions			1		1					
Interrupt	INT		Indicates the start of the interrupt program "n".	1	a	a	a	a	a	a	a
Interrupt return	IRET		Ends the interrupt program.	1	O	a	0	0	O	a	a
Interrupt control	ICTL		Select interrupt enable/disable or clear in "S1" and "S2" and execute.	5	a	a	O	O	a	a	a

*1) In the FP2/FP2SH/FP10SH, when the number "n" of a subroutine program has an index modifier, the number of steps is the number in parentheses.

Name	Boolean	Symbol	Description	Steps	FP-e	FP0	FP0 (FP0R mode)	FPΣ	FP-X	FP2	FP2SH/FP10SH
Special setting	instructions	6									
Communica- tion condi- tions setting	SYS1		Change the communication conditions for the COM port or tool port based on the contents specified by the character constant.		×	×	a	0 *1	0 *1	×	×
Password setting			Change the password specified by the PLC based on the contents specified by the character constant.		×	×	a	0 *2	0 *2	×	×
Interrupt setting			Set the interrupt input based on the contents specified by the character constant.		×	×	a	a	a	×	×
PLC link time setting		H HOFHESYSI, M]	Set the system setting time when a PLC link is used, based on the contents specified by the character constant.	13	×	×	a	a	a	×	×
MEWTOCOL- COM response control			Change the communication conditions of the COM. port or tool port for MEWTOCOL-COM based on the contents specified by the character constant.		×	×	a	0	a	Х	х
High-speed counter operation mode changing			Change the operation mode of the high- speed counter, based on the contents specified by the character constant.		×	×	a	○ *3	0 *3	х	×
System registers "No. 40 to No. 47" changing	SYS2	H H[\$Y\$2, S, D1, D2] →	Change the setting value of the system register for the PLC link function.	7	×	×	a	a	a	×	×

*1) With FP-X Ver2.0 or later, and FP Σ Ver 3.10 or later, the baud rate can be selected from 300, 600 or 1200 bps.

*2) With FP Σ 32k type, the 8-digit password can be selected.

*3) With FP Σ 32k type and FP-X Ver1.10 or later, it can be used.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Name	Boolean	Symbol	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
Data comp	are instruct	tions									
16-bit	ST=		Begins a logic operation by comparing two 16-	5	0	o	O	O	O	O	O
data			bit data in the comparative condition "S1=S2".	Ŭ	9	9	0	9	9	9	9
compare (Start)	ST<>	ר ^{< > S1, S2} ⊐_	Begins a logic operation by comparing two 16- bit data in the comparative condition "S1 <s2" or "S1>S2".</s2" 	5	a	a	a	a	a	a	a
	ST>	↓ ^C > S1, S2 →	Begins a logic operation by comparing two 16- bit data in the comparative condition "S1>S2".	5	a	a	a	0	0	a	a
	ST>=	↓	Begins a logic operation by comparing two 16- bit data in the comparative condition "S1>S2" or "S1=S2".	5	a	a	a	O	O	a	a
	ST<	└─ ^{< S1, S2}	Begins a logic operation by comparing two 16- bit data in the comparative condition "S1 <s2".< td=""><td>5</td><td>a</td><td>a</td><td>O</td><td>Ο</td><td>Ο</td><td>a</td><td>a</td></s2".<>	5	a	a	O	Ο	Ο	a	a
	ST<=	↓ < = S1, S2 ┐_	Begins a logic operation by comparing two 16- bit data in the comparative condition "S1 <s2" or "S1=S2".</s2" 	5	a	a	a	a	a	a	a
16-bit data	AN=	= \$1,\$2	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1=S2".	5	a	a	a	a	a	a	a
compare (AND)	AN<>	< > \$1, \$2	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1 <s2" "s1="" or="">S2".</s2">	5	a	a	a	O	O	a	a
	AN>	^{> S1, S2}	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1>S2".	5	a	a	a	O	a	O	O
	AN>=	> = \$1, \$2	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1>S2" or "S1=S2".	5	a	a	o	a	a	a	a
	AN<	^{< \$1, \$2}	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1 <s2".< td=""><td>5</td><td>a</td><td>a</td><td>a</td><td>a</td><td>a</td><td>a</td><td>a</td></s2".<>	5	a	a	a	a	a	a	a
	AN<=	<= \$1, \$2	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1 <s2" "s1='S2".</td' or=""><td>5</td><td>a</td><td>a</td><td>a</td><td>a</td><td>a</td><td>a</td><td>a</td></s2">	5	a	a	a	a	a	a	a
16-bit data	OR=	= \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1=S2".	5	a	a	a	a	a	a	a
compare (OR)	OR<>	^{< > \$1, \$2}	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1 <s2" "s1="" or="">S2".</s2">	5	a	a	a	O	O	a	a
	OR>	^{> S1, S2}]	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1>S2".	5	a	a	a	O	a	a	a
	OR>=	>= \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1>S2" or "S1=S2".	5	a	a	a	a	a	a	a
	OR<	^{< S1, S2}	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1 <s2".< td=""><td>5</td><td>a</td><td>a</td><td>a</td><td>O</td><td>a</td><td>a</td><td>a</td></s2".<>	5	a	a	a	O	a	a	a
	OR<=	<= \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1 <s2" "s1='S2".</td' or=""><td>5</td><td>a</td><td>a</td><td>a</td><td>O</td><td>O</td><td>a</td><td>a</td></s2">	5	a	a	a	O	O	a	a

 $\overline{\mathbb{O}}$: Available, \times : Not available, \triangle : Not available partially

Name	Boolean	Symbol	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
32-bit data	STD=	D=	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	a	a	a	O	a	a	a
compare (Start)	STD<>	D<> S1, S2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	a	a	a	a	a	a	a
	STD>	ך⊏ ^{D> S1, S2} ⊐_	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	a	a	a	a	a	a	a
	STD>=	↓ C ^{D> = S1, S2}]	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	a	a	a	a	a	a	a
	STD<	ךר ^{ס< s1, s2} ך	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	a	a	a	a	a	a	a
	STD<=	└└ ^{D<= S1, S2} ┐	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	a	a	a	a	a	a	a
32-bit data	AND=	^{D= S1, S2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	a	a	a	a	a	a	a
compare (AND)	AND<>	^{D<> S1, S2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	a	a	a	Ο	σ	a	a
	AND>	^{D> S1, S2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	a	a	a	σ	O	a	a
	AND>=	D> = \$1, \$2]	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	a	a	a	O	O	O	O
	AND<	^{D< \$1, \$2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	a	a	a	a	a	a	a
	AND<=	^{D< = S1, S2}]	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	a	a	a	O	O	O	a
32-bit data	ORD=	□= S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	a	a	a	O	O	O	O
compare (OR)	ORD<>	^{D< > S1, S2}	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	a	a	a	a	a	a	a
	ORD>	D> \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	a	a	a	a	a	a	a
	ORD>=	D>=S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	a	a	a	a	a	a	a
	ORD<	D< \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	a	a	a	a	a	O	a
	ORD<=	D< = \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	a	a	a	a	a	a	a

Name	Boolean	Symbol	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
Floating point	STF=	F= \$1, \$2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	×	Х	a	∆ *1	∆ *1	×	×
type real number	STF<>	F<> \$1, \$2 ⊥	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	×	×	a	∆ *1	∆ *1	×	×
data compare	STF>	F> S1, S2 ⊥	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	×	×	a	∆ *1	∆ *1	×	×
(Start)	STF>=	F> = S1, S2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	×	Х	O	∆ *1	∆ *1	×	×
	STF<	F< \$1, \$2 ⊥	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	×	Х	O	∆ *1	∆ *1	Х	×
	STF<=	F< = \$1, \$2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	×	х	O	∆ *1	∆ *1	х	×
Floating point	ANF=	^{F= S1, S2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	×	×	a	∆ *1	∆ *1	×	×
type real number data	ANF<>	^{F<> S1, S2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	×	×	a	∆ *1	∆ *1	×	×
compare (AND)	ANF>	F> \$1, \$2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	×	Х	O	∆ *1	∆ *1	×	×
	ANF>=	F> = S1, S2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	×	Х	O	∆ *1	∆ *1	×	×
	ANF<	^{F< \$1, \$2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	×	X	O	∆ *1	∆ *1	×	×
	ANF<=	F< = S1, S2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	×	×	a	∆ *1	∆ *1	×	×
Floating point	ORF=	F= \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	×	×	a	∆ *1	∆ *1	×	×
type real number data	ORF<>	F<> \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	×	Х	O	∆ *1	∆ *1	×	×
compare (OR)	ORF>	F> \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	×	Х	O	∆ *1	∆ *1	х	×
	ORF>=	F> = \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	×	Х	a	∆ *1	∆ *1	×	×
	ORF<	F< \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	Х	Х	O	∆ *1	∆ *1	×	×
	ORF<=	F< = \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	×	×	a	∆ *1	∆ *1	×	×

 \overline{O} : Available, \times : Not available, $\overline{\Delta}$: Not available partially *1) This instruction is available for FP-X V1.10 or later and FP Σ 32k type

14.3 Table of High-level Instructions

The high-level instructions are expressed by the prefixes "F" or "P" with numbers. For most of the high-level instructions, "F" and "P" types are available. The differences between the two types are explained as follows:

- Instructions with the prefix "F" are executed in every scan while its trigger is in the on.

- Instructions with the prefix "P" are executed only when the leading edge of its trigger is detected.

For the FP0/FP0R/FP Σ /FP-X, the P type high-level instructions are not available.

Num- ber	Name	Boo- lean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
	ansfer instruction											
F0 P0	16-bit data move	MV PMV	S, D	(S)→(D)	5	0	0	0	0	0	0	0
FU F1	32-bit data	DMV	S, D	(S+1, S)→(D+1, D)								
P1	move	PDMV	0, 0		7	0	O	0	0	0	0	0
F2	16-bit data	MV	S, D									
P2	invert and move	PMV/		(S)→(D)	5	0	a	0	a	O	a	a
F3 P3	32-bit data invert and move	DMV/ PDMV/	S, D	(S+1, S)→(D+1, D)	7	0	a	0	0	O	O	a
F4 P4	Reading of head word No. of the specified slot	GETS PGETS	S, D	The head word No. of the specified slot is read.	5	×	×	×	×	×	∆ *1	∆ *1
F5 P5	Bit data move	ВТМ РВТМ	S, n, D	The specified one bit in "S" is transferred to the specified one bit in "D". The bit is specified by "n".	7	0	a	a	a	a	a	a
F6 P6	Hexadecimal digit (4-bit) data move	DGT PDGT	S, n, d	The specified one digit in "S" is transferred to the specified one digit in "D". The digit is specified by "n".	7	0	a	a	a	a	a	a
F7	Two 16-bit	MV2	S1,	(S1)→(D),	7	×	Х	0	0	0	0	a
P7 F8	data move Two 32-bit	PMV2 DMV2	S2, D S1.	(S2)→(D+1) (S1+1, S1)→(D+1, D),								<u> </u>
P8	data move	PDMV2	S1, S2, D	$(S1+1, S1) \rightarrow (D+1, D),$ (S2+1, S2) $\rightarrow (D+3, D+2)$	11	\times	×	0	O	a	a	0
F10 P10	Block move	BKMV PBKMV	S1, S2, D	The data between "S1" and "S2" is transferred to the area starting at "D".	7	0	a	0	a	0	a	a
F11 P11	Block copy	COPY PCOPY	S, D1, D2	The data of "S" is transferred to the all area between "D1" and "D2".	7	0	O	0	O	0	a	O
F12	Data read from EEP- ROM	ICRD	S1, S2, D	The data stored in the expansion memory of the EEP-ROM specified by "S1" and "S2" are transferred to the area startign at "D".	11	0	() *2	Х	х	х	х	×
P13	Data write to EEP-ROM	PICWT	S1, S2, D	The data specified by "S1" and "S2" are transferred to the EEP-ROM starting at "D".	11	0	0 *2	Х	х	х	х	×
F12	Data read from F-ROM	ICRD	S1, S2, D	The data stored in the expansion memory of the F-ROM specified by "S1" and "S2" are transferred to the area startign at "D".	11	Х	×	O	O	D	х	×
P13	Data write to F-ROM	PICWT	S1, S2, D	The data specified by "S1" and "S2" are transferred to the F-ROM starting at "D".	11	×	Х	0	a	0	×	Х
F12 P12	Data read from IC card	ICRD PICRD	S1, S2, D	The data stored in the expansion memory of the IC card specified by "S1" and "S2" are transferred to the area startign at "D".	11	×	Х	×	×	×	×	a
F13 P13	Data write to IC card	ICWT PICWT	S1, S2, D	The data specified by "S1" and "S2" are transferred to the IC card expansion memory area starting at "D".	11	×	×	×	×	×	×	a
F14 P14	Program read from IC memory card	PGRD PPGRD	S	The program specified using "S" is transferred into the CPU from IC memory card and executes it.	3	×	×	×	×	×	×	a

 \bigcirc : Available, \times : Not available, \triangle : Not available partially

*1) This instruction is available for FP2/FP2SH Ver. 1.5 or later.FP10SH cannot be used

*2) This instruction is available for FP0 Ver. 2.0 or later.

Num- ber	Name	Boo-lean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPZ	FP-X	FP2	FP2SH/FP10SH
F15 P15	16-bit data exchange	XCH PXCH	D1, D2	(D1)→(D2), (D2)→(D1)	5	0	a	O	0	0	a	0
F16 P16	32-bit data exchange	DXCH PDXCH	D1, D2	(D1+1, D1)→(D2+1, D2) (D2+1, D2)→(D1+1, D1)	5	a	a	0	0	0	O	a
F17 P17	Higher/lower byte in 16-bit data exchange	SWAP PSWAP	D	The higher byte and lower byte of "D" are exchanged.	3	a	a	0	0	0	a	a
F18 P18	16-bit data block exchange	ВХСН РВХСН	D1, D2, D3	Exchange the data between "D1" and "D2" with the data specified by "D3".	7	×	×	a	a	a	a	a
Contro	l instruction											
F19	Auxiliary jump	SJP	S	The program jumps to the label instruction specified by "S" and continues from there.	3	×	×	×	×	×	a	a
	arithmetic instruc		0.0			r	1					
F20 P20	16-bit data addition	+ P+	S, D	(D)+(S)→(D)	5	a	a	a	O	O	a	a
F21 P21	32-bit data addition	D+ PD+	S, D	(D+1, D)+(S+1, S)→(D+1, D)	7	a	a	O	0	0	a	a
F22 P22	16-bit data addition	+ P+	S1, S2, D	(S1)+(S2)→(D)	7	0	O	O	0	0	O	a
F23 P23	32-bit data addition	D+ PD+	S1, S2, D	(S1+1, S1)+(S2+1, S2)→(D+1, D)	11	a	a	O	0	0	O	0
F25 P25	16-bit data subtraction	- P-	S, D	(D)-(S)→(D)	5	0	0	0	0	0	0	0
F26 P26	32-bit data subtraction	D- PD-	S, D	(D+1, D)-(S+1, S)→(D+1, D)	7	O	O	0	0	0	O	a
F27 P27	16-bit data subraction	- P-	S1, S2, D	(S1)-(S2)→(D)	7	0	0	O	0	0	O	a
F28 P28	32-bit data subtraction	D- PD-	S1, S2, D	(S1+1, S1)-(S2+1, S2)→(D+1, D)	11	0	0	O	0	0	O	0
F30 P30	16-bit data multiplication	* P*	S1, S2, D	(S1)X(S2)→(D+1, D)	7	0	Ο	O	0	0	O	a
F31 P31	32-bit data multiplication	D* PD*	S1, S2, D	(S1+1, S1)X(S2+1, S2)→(D+3, D+2, D+1, D)	11	0	0	0	0	0	0	a
F32 P32	16-bit data division	% P%	S1, S2, D	(S1)÷(S2)→quotient (D) remainder (DT9015)	7	O	a	a	0	0	a	a
F33 P33	32-bit data division	D% PD%	S1, S2, D	(S1+1, S1)÷(S2+1, S2)→quotient (D+1, D) remainder (DT9016, DT9015)	11	a	a	O	O	O	a	a
F34 P34	16-bit data multiplication (result in 16 bits)	*W P*W	S1, S2, D	(S1)X(S2)→(D)	7	×	×	O	O	O	O	a
F35 P35	16-bit data increment	+1 P+1	D	(D)+1→(D)	3	a	a	O	0	0	a	a
F36 P36	32-bit data increment	D+1 PD+1	D	(D+1, D)+1→(D+1, D)	3	O	a	a	0	0	a	a
F37 P37	16-bit data decrement	-1 P-1	D	(D)-1→(D)	3	0	a	a	0	0	a	a
F38 P38	32-bit data decrement	D-1 PD-1	D	(D+1, D)-1→(D+1, D)	3	0	a	a	0	0	a	a
F39 P39	32-bit data multiplication (result in 32 bits) lable, X : Not avail	D*D PD*D	S1, S2, D	(S1+1, S1)x(S2+1, S2)→(D+1, D)	11	×	×	a	a	a	a	a

Num- ber	Name	Boo-lean	Ope- rand		Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
	ithmetic instructio				1								
F40	4-digit BCD	B+	S, D		(D)+(S)→(D)	5	a	0	0	0	0	o	a
P40	data addition	PB+ DB+	0.0		$(\mathbf{D} \cdot 1, \mathbf{D}) \cdot (\mathbf{C} \cdot 1, \mathbf{C}) \cdot (\mathbf{D} \cdot 1, \mathbf{D})$								
F41 P41	8-digit BCD data addition	PDB+	S, D		(D+1, D)+(S+1, S)→(D+1, D)	7	0	0	0	0	0	0	0
F42	4-digit BCD	B+	S1, S2,	D	(S1)+(S2)→(D)								
P42	data addition	PB+	01, 02,	, _		7	O	0	a	Q	O	a	a
F43	8-digit BCD	DB+	S1, S2,	, D	(S1+1, S1)+(S2+1, S2)→(D+1, D)	11	a	a	a	0	0	a	a
P43	data addition	PDB+				11	U	0	U	U	U	U	0
F45	4-digit BCD data	B-	S, D		(D)-(S)→(D)	5	a	o	a	a	0	o	a
P45	subtraction	PB-				-)	(j	
F46 P46	8-digit BCD data subtraction	DB- PDB-	S, D		(D+1, D)-(S+1, S)→(D+1, D)	7	0	0	O	0	0	O	O
F40	4-digit BCD data	B-	S1, S2,	D	(S1)-(S2)→(D)								
P47	subtraction	PB-	01, 02,	, D		7	0	0	0	O	0	O	O
F48	8-digit BCD data	DB-	S1, S2,	, D	(S1+1, S1)-(S2+1, S2)→(D+1, D)		~	~	~	~	~	~	~
P48	subraction	PDB-				11	0	0	a	a	Q	a	a
F50	4-digit BCD data	B*	S1, S2,	, D	(S1)X(S2)→(D+1, D)	7	0	0	0	0	0	Q	0
P50	multiplication	PB*				<u>'</u>	0	0	0	0	0	0	0
F51	8-digit BCD data	DB*	S1, S2,	, D	(S1+1, S1)X(S2+1, S2)→(D+3, D+2,	11	a	0	a	0	0	a	a
P51	multiplication	PDB*	04 00	D	D+1, D)								
F52 P52	4-digit BCD data division	В% РВ%	S1, S2,	, D	(S1)÷(S2)→quotient (D) remainder (DT9015)	7	0	0	0	0	0	O	0
F53 P53	8-digit BCD data division	DB% PDB%	S1, S2,	, D	(S1+1, S1)÷(S2+1, S2) \rightarrow quotient (D+1, D) remainder (DT9016, DT9015)	11	a	a	a	a	a	a	a
F55	4-digit BCD data	B+1	D		(D)+1→(D)		~	~	~	0	Ö	0	~
P55	increment	PB+1				3	Q	0	Q	0	Q	Q	O
F56 P56	8-digit BCD data increment	DB+1 PDB+1	D		(D+1, D)+1→(D+1, D)	3	a	a	a	a	0	O	a
F57	4-digit BCD data	B-1	D		(D)-1→(D)	3	0	0	a	0	0	O	a
P57 F58	decrement	PB-1 DB-1	D										<u> </u>
F58 P58	8-digit BCD data decrement	PDB-1			(D+1, D)-1→(D+1, D)	3	O	0	O	0	0	O	a
	ompare instruction		L		l	1	I	I	I	1		1	<u> </u>
F60	16-bit data	CMP	S1, S2		(S1)>(S2)→R900A: on								
P60	compare	PCMP	- , -		(S1)=(S2)→R900B: on (S1)<(S2)→R900C: on	5	a	a	a	a	O	a	a
F61 P61	32-bit data compare	DCMP PDCMP	S1, S2		$(S1+1, S1)>(S2+1, S2)\rightarrow R900A: on$ $(S1+1, S1)=(S2+1, S2)\rightarrow R900B: on$ $(S1+1, S1)<(S2+1, S2)\rightarrow R900C: on$	9	a	a	a	O	a	O	a
F62 P62	16-bit data band compare	WIN PWIN	S1, S2, S3	,	(S1)>(S3)→R900A: on (S2)< or=(S1)< or=(S3)→R900B: on (S1)<(S2)→R900C: on	7	a	a	a	a	a	a	a

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Num- ber	Name	Boo- lean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F63 P63	32-bit data band compare	DWIN PDWIN	S1, S2, S3	$(S1+1, S1)>(S3+1, S3)\rightarrow R900A:$ on $(S2+1, S2)< or=(S1+1, S1)< or=(S3+1, S3)\rightarrow R900B:$ on $(S1+1, S1)<(S2+1, S2)\rightarrow R900C:$ on	13	O	a	a	O	O	O	O
F64 P64	Block data compare operation instru	BCMP PBCMP	S1, S2, S3	Compares the two blocks beginning with "S2" and "S3" to see if they are equal.	7	a	a	a	a	a	a	a
F65 P65	16-bit data	WAN	S1, S2, D	(S1) AND (S2)→(D)	7	0	0	0	O	O	0	a
F66 P66	16-bit data OR	WOR PWOR	S1, S2, D	(S1) OR (S2)→(D)	7	a	a	0	a	a	0	a
F67 P67	16-bit data exclusive OR	XOR PXOR	S1, S2, D		7	a	a	O	a	a	0	a
F68 P68	16-bit data exclusive NOR	XNR PXNR	S1, S2, D		7	a	a	σ	a	a	O	a
F69 P69	16-bit data unite	WUNI PWUNI	S1, S2, S3, D	 ([S1] AND [S3]) OR ([S2] AND [S3])→(D) When (S3) is H0, (S2)→(D) When (S3) is HFFFF, (S1) →(D)	9	×	×	a	O	O	O	O
Data co	onversion instru	uctions	-									
F70 P70	Block check code calculation	BCC PBCC	S1, S2, S3, D	Creates the code for checking the data specified by "S2" and "S3" and stores it in "D". The calculation method is specified by "S1".	9	a	a	a	a	a	a	a
F71 P71	Hexadecima I data → ASCII code	HEXA PHEXA	S1, S2, D	Converts the hexadecimal data specified by "S1" and "S2" to ASCII code and stores it in "D". Example: HABCD \rightarrow H <u>42</u> <u>41</u> <u>44</u> <u>43</u> B A D C	7	a	a	a	O	O	O	a
F72 P72	ASCII code → Hexadeci- mal data	AHEX PAHEX	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to hexadecimal data and stores it in "D". Example: H <u>44 43 42 41</u> \rightarrow HCDAB D C B A	7	a	a	a	a	a	a	a
F73 P73	4-digit BCD data → ASCII code	BCDA PBCDA	S1, S2, D	Converts the four digits of BCD data specified by "S1" and "S2" to ASCII code and stores it in "D". Example: H1234 \rightarrow H <u>32 31 34 33</u> 2 1 4 3	7	a	a	a	a	a	a	a
F74 P74	ASCII code → 4-digit BCD data	ABCD PABCD	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to four digits of BCD data and stores it in "D". Example: H 34 33 32 $31 \rightarrow$ H3412 4 3 2 1	9	a	a	O	O	O	a	a
F75 P75	16-bit binary data → ASCII code	BINA PBINA	S1, S2, D	Converts the 16 bits of binary data specified by "S1" to ASCII code and stores it in "D" (area of "S2" bytes). Example: K-100 \rightarrow H $\underline{30}$ $\underline{30}$ $\underline{31}$ $\underline{2D}$ $\underline{20}$ $\underline{20}$ 0 0 1 -	7	a	a	a	a	a	a	a

Num- ber	Name	Boo-lean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F76 P76	ASCII code → 16-bit binary data	ABIN PABIN	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to 16 bits of binary data and stores it in "D". Example: H $\underline{30} \ \underline{30} \ \underline{31} \ \underline{2D} \ \underline{20} \ \underline{20} \rightarrow \text{K-100}$ $0 \ 0 \ 1 \ -$	7	a	O	a	a	a	O	a
F77 P77	32-bit binary data → ASCII code	DBIA PDBIA	S1, S2, D	Converts the 32 bits of binary data (S1+1, S1) to ASCII code and stores it in D (area of "S2" bytes).	11	a	a	a	O	a	a	a
F78 P78	ASCII code → 32-bit binary data	DABI PDABI	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to 32 bits of binary data and stores it in (D+1, D).	11	a	a	a	Ο	a	a	a
F80 P80	16-bit binary data → 4-digit BCD data	BCD PBCD	S, D	Converts the 16 bits of binary data specified by "S" to four digits of BCD data and stores it in "D". Example: K100 \rightarrow H100	5	a	a	a	a	a	a	a
F81 P81	4-digit BCD data → 16-bit binary data	BIN PBIN	S, D	Converts the four digits of BCD data specified by "S" to 16 bits of binary data and stores it in "D". Example: H100 \rightarrow K100	5	a	a	a	a	a	a	a
F82 P82	32-bit binary data → 8-digit BCD data	DBCD PDBCD	S, D	Converts the 32 bits of binary data specified by (S+1, S) to eight digits of BCD data and stores it in (D+1, D).	7	a	a	a	a	a	a	a
F83 P83	8-digit BCD data → 32-bit binary data	DBIN PDBIN	S, D	Converts the eight digits of BCD data specified by (S+1, S) to 32 bits of binary data and stores it in (D+1, D).	7	a	a	a	a	a	a	a
F84 P84	16-bit data invert (com- plement of 1)	INV PINV	D	Inverts each bit of data of "D".	3	a	a	a	a	a	a	a
F85 P85	16-bit data complement of 2	NEG PNEG	D	Inverts each bit of data of "D" and adds 1 (inverts the sign).	3	a	a	a	σ	a	a	a
F86 P86	32-bit data complement of 2	DNEG PDNEG	D	Inverts each bit of data of (D+1, D) and adds 1 (inverts the sign).	3	a	a	a	σ	a	a	a
F87 P87	16-bit data absolute	ABS PABS	D	Gives the absolute value of the data of "D".	3	0	0	0	0	0	0	0
F88 P88	32-bit data absolute	DABS	D	Gives the absolute value of the data of (D+1, D).	3	a	a	a	a	a	a	a
F89 F89 P89	16-bit data sign extension	EXT PEXT	D	Extends the 16 bits of data in "D" to 32 bits in (D+1, D).	3	a	a	a	a	a	a	a
F90 P90	Decode	DECO PDECO	S, n, D	Decodes part of the data of "S" and stores it in "D". The part is specified by "n".	7	a	a	a	a	a	a	a
F91 P91	7-segment decode	SEGT PSEGT	S, D	Converts the data of "S" for use in a 7- segment display and stores it in (D+1, D).	5	a	a	a	a	a	a	a
F92 P92	Encode	ENCO PENCO	S, n, D	Éncodes part of the data of "S" and stores it in "D". The part is specified by "n".	7	a	a	a	a	a	a	a
F93 P93	16-bit data combine	UNIT PUNIT	S, n, D	The least significant digit of each of the "n" words of data beginning at "S" are stored (united) in order in "D".	7	a	a	a	a	a	a	a

Num-	Name	Boo-	Ope-	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
ber	Name	lean	rand	Description	Ste	Ë	Ē	FР	F	Ħ	F	FP2SH/
F94 P94	16-bit data distribute	DIST PDIST	S, n, D	Each of the digits of the data of "S" are stored in (distriuted to) the least significant digits of the areas beginning at "D".	7	a	a	a	a	a	O	a
F95 P95	Character→ ASCII code	ASC PASC	S, D	Twelve characters of the characer constants of "S" are converted to ASCII code and stored in "D" to "D+5".	15	a	a	a	a	a	O	a
F96 P96	16-bit table data search	SRC PSRC	S1, S2, S3	The data of "S1" is searched for in the areas in the range "S2" to "S3" and the result is stored in DT9037 and DT9038	7	a	a	a	a	a	a	a
F97 P97	32-bit table data search	DSRC PDSRC	S1, S2, S3	The data of (S1+1, S1) is searched for in the 32-bit data designated by "S3", beginning from "S2", and the result if stored in DT90037 and DT90038.	11	×	×	O	a	a	a	a
Data sh	nift instructions											
F98 P98	Data table shift-out and compress	CMPR PCMPR	D1, D2, D3	Transfer "D2" to "D3". Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2".	7	×	×	O	O	a	O	a
F99 P99	Data table shift-in and compress	CMPW PCMP W	S, D1, D2	Transfer "S" to "D1". Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2".	7	×	×	a	a	a	O	a
F100 P100	Right shift of multiple bits (n bits) in a 16-bit data	SHR PSHR	D, n	Shifts the "n" bits of "D" to the right.	5	a	a	a	a	a	O	a
F101 P101	Left shift of multiple bits (n bits) in a 16- bit data	SHL PSHL	D, n	Shifts the "n" bits of "D" to the left.	5	a	a	a	a	a	a	a
F102 P102	Right shift of n bits in a 32-bit data	DSHR PDSHR	D, n	Shifts the "n" bits of the 32-bit data area specified by (D+1, D) to the right.	5	×	×	a	a	a	a	a
F103 P103	Left shift of n bits in a 32-bit data	DSHL PDSHL	D, n	Shifts the "n" bits of the 32-bit data area specified by (D+1, D) to the left.	5	×	\times	a	a	a	O	a
F105 P105	Right shift of one hexadecimal digit (4- bit)	BSR PBSR	D	Shifts the one digit of data of "D" to the right.	3	a	a	a	a	a	a	a
F106 P106	Left shift of one hexade-cimal digit (4-bit)	BSL PBSL	D	Shifts the one digit of data of "D" to the left.	3	a	a	a	a	a	a	a
F108 P108	Right shift of multiple bits (n bits)	bitr Pbitr	D1, D2, n	Shifts the "n" bits of data range by "D1" and "D2" to the right.	7	Х	Х	O	O	a	O	a
F109 P109	Left shift of multiple bits (n bits)	BITL PBITL	D1, D2, n	Shifts the "n" bits of data range by "D1" and "D2" to the left.	7	×	×	O	0	a	O	a
F110 P110	Right shift of one word (16-bit)	WSHR PWSHR	D1, D2	Shifts the one word of the areas by "D1" and "D2" to the right.	5	a	a	0	O	0	0	a
F111 P111	Left shift of one word (16-bit)	WSHL PWSHL	D1, D2	Shifts the one word of the areas by "D1" and "D2" to the left.	5	O	a	O	O	a	O	a
F112 P112	Right shift of one hexade-cimal digit (4-bit)	WBSR PWBSR	D1, D2	Shifts the one digit of the areas by "D1" and "D2" to the right.	5	O	a	a	a	a	O	a
F113 P113	Left shift of one hexade-cimal digit (4-bit) able. X : Not available.	WBSL PWBSL	D1, D2	Shifts the one digit of the areas by "D1" and "D2" to the left.	5	a	a	a	0	a	0	a

14-41

Num- ber	Name	Boo- lean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
FIFO ir	nstructions			·								
F115	FIFO buffer define	FIFT	n, D	The "n" words beginning from "D" are	5	×	×	0	0	0	0	0
P115		PFIFT		defined in the buffer.	Ŭ	<u> </u>	~	0	0	9	5	~
F116	Data read from	FIFR	S, D	The oldest data beginning from "S"	-			~	~	~	~	~
P116	FIFO buffer	PFIFR		that was written to the buffer is read and stored in "D".	5	×	×	a	a	O	a	0
F117	Data write into	FIFW	S, D	The data of "S" is written to the buffer								
P117	FIFO buffer	PFIFW	0, D	starting from "D".	5	×	×	O	O	O	0	0
	function instructions		1		1							<u> </u>
F118	UP/DOWN counter	UDC	S, D	Counts up or down from the value preset in "S" and stores the elapsed value in "D".	5	a	a	a	a	a	a	a
F119	Left/right shift register	LRSR	D1, D2	Shifts one bit to the left or right with the area between "D1" and "D2" as the register.	5	a	a	a	a	a	a	a
Data ro	otate instructions		1									<u> </u>
F120 P120	16-bit data right rotate	ROR PROR	D, n	Rotate the "n" bits in data of "D" to the right.	5	a	0	a	a	a	0	a
F121 P121	16-bit data left rotate	ROL PROL	D, n	Rotate the "n" bits in data of "D" to the left.	5	0	O	0	0	0	0	0
F122 P122	16-bit data right rotate with carry flag (R9009) data	RCR PRCR	D, n	Rotate the "n" bits in 17-bit area consisting of "D" plus the carry flag (R9009) data to the right.	5	a	a	a	a	a	o	a
F123 P123	16-bit data left rotate with carry flag (R9009) data	RCL PRCL	D, n	Rotate the "n" bits in 17-bit area consisting of "D" plus the carry flag (R9009) data to the left.	5	σ	a	a	a	σ	σ	a
F125 P125	32-bit data right rotate	DROR PDROR	D, n	Rotate the number of bits specified by "n" of the double words data (32 bits) specified by (D+1, D) to the right.	5	×	×	a	a	a	a	a
F126 P126	32-bit data left rotate	DROL PDROL	D, n	Rotate the number of bits specified by "n" of the double words data (32 bits) specified by (D+1, D) to the left.	5	×	×	a	a	a	a	a
F127 P127	32-bit data right rotate with carry flag (R9009) data	DRCR PDRCR	D, n	Rotate the number of bits specified by "n" of the double words data (32 bits) specified by (D+1, D) to the right together with carry flag (R9009) data.	5	×	×	a	a	a	a	a
F128 P128	32-bit data left rotate with carry flag (R9009) data	DRCL PDRCL	D, n	Rotate the number of bits specified by "n" of the double words data (32 bits) specified by (D+1, D) to the left together with carry flag (R9009) data.	5	×	×	a	a	a	a	a
Bit ma	nipulation instructions	3										
F130 P130	16-bit data bit set	BTS PBTS	D, n	Set the value of bit position "n" of the data of "D" to 1.	5	O	a	O	O	O	O	a
F131 P131	16-bit data bit reset	BTR PBTR	D, n	Set the value of bit position "n" of the data of "D" to 0.	5	O	a	a	a	O	0	a
F132 P132	16-bit data invert	BTI PBTI	D, n	Invert the value of bit position "n" of the data of "D".	5	O	O	a	a	O	O	a
F133 P133	16-bit data bit test	BTT PBTT	D, n	Test the value of bit position "n" of the data of "D" and output the result to R900B.	5	a	a	a	a	a	a	a
F135 P135	Number of on (1) bits in 16-bit data	BCU PBCU	S, D	Store the number of on bits in the data of "S" in "D".	5	a	O	0	0	0	0	O

Num -ber	Name	Boo- lean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F136 P136	Number of on (1) bits in 32-bit data	DBCU PDBCU	S, D	Store the number of on bits in the data of (S+1, S) in "D".	7	a	a	a	0	a	a	a
Basic function instruction												
F137	Auxiliary timer (16-bit)	STMR	S, D	Turn on the specified output and R900D after 0.01 s \times set value.	5	0	a	a	O	a	a	0
	l instructions	111100	0.0	On successful the basis instances and an and a		r	1	1		1		
F138 P138	Hours, min- utes and sec- onds to seconds data	HMSS PHMSS	S, D	Converts the hour, minute and second data of (S+1, S) to seconds data, and the converted data is stored in (D+1, D).	5	a	∆ *1	a	a	a	a	a
F139 P139	Seconds to hours, minutes and seconds data	SHMS PSHMS	S, D	Converts the seconds data of (S+1, S) to hour, minute and second data, and the converted data is stored in (D+1, D).	5	a	∆ *1	a	a	a	a	a
F140 P140	Carry flag (R9009) set	STC PSTC	-	Turns on the carry flag (R9009).	1	O	a	a	O	a	a	a
F141 P141	Carry flag (R9009) reset	CLC PCLC	-	Turns off the carry flag (R9009).	1	O	a	a	O	a	a	a
F142 P142	Watching dog timer update	WDT PWDT	S	The time (allowable scan time for the system) of watching dog timer is changed to "S" \times 0.1 (ms) for that scan.	3	×	×	×	Х	×	×	a
F143 P143	Partial I/O update	iorf Piorf	D1, D2	Updates the I/O from the number specified by "D1" to the number specified by "D2".	5	a	a	a	a	a	a	a
F144	Serial data communica- tion control	TRNS	S, n	The COM port received flag (R9038) is set to off to enable reception. Beginning at "S", "n" bytes of the data registers are sent from the COM port.	5	a	⊂ *4	×	х	×	a	a
F145 P145	Data send	SEND PSEND	S1, S2, D, N	Sends the data to another station in the network (MEWNET). (via link unit)	9	×	×	×	×	×	a	a
F146 P146	Data receive	RECV PRECV	S1, S2, N, D	Receives the data to another station in the network (MEWNET). (via link unit)	9	×	×	×	×	×	O	a
F145 P145	Data send	SEND	S1, S2, D, N	Sends the data to the slave station as the MOD bus master. (via COM port)	9	×	×	a	∆ *2	a	Х	×
F146 P146	Data receive	RECV	S1, S2, N, D	Receives the data from the slave station as the MOD bus master. (via COM port)	9	×	×	a	∆ *2	a	×	\times
F145 P145	Data send	SEND	S1, S2, D, N	Sends the data to the slave station of the MOD bus master, type II.	9	×	×	a	∆ *3	∆ *3	\times	\times
F146 P146	Data receive	RECV	S1, S2, N, D	Receives the data from the slave station of the MOD bus master, type II.	9	×	×	a	∆ *3	∆ *3	×	×
F145 P145	Data send	SEND	S1, S2, D, N	Sends the data to the slave station as the MEWTOCOL master. (via COM port)	9	×	×	a	∆ *2	∆ *2	×	×
F146 P146	Data receive	RECV	S1, S2, N, D	Receives the data from the slave station as the MEWTOCOL master. (via COM port)	9	×	×	a	∆ *2	∆ *2	×	×
F147	Printout	PR	S, D	Converts the ASCII code data in the area starting with "S" for printing, and outputs it to the word external output relay WY specified by "D".	5	a	a	a	Ο	a	a	a
F148 P148	Self- diagnostic error set	ERR PERR	n (n: k100 to K299)	Stores the self-diagnostic error number "n" in (DT9000), turns R9000 on, and turns on the ERROR LED.	3	a	a	a	a	a	a	a
F149 P149	Message display	MSG PMSG	S	Displays the character constant of "S" in the connected programming tool.	13	0	a	a	O	a	O	0

 $\overline{\mathbb{O}}$: Available, \times : Not available, Δ : Not available partially

*1) The instruction is available for FP0 T32 type (V2.3 or later).

*2) This instruction is available for FP-X V1.20 or later and FP Σ 32k type.

*3) This instruction is available for FP-X V2.50 or later and FP Σ V3.20 or later.

*4) This instruction is available for FP0 V1.20 or later.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F150 P150	Data read from intelli-gent unit	READ PREAD	S1, S2, n, D	Reads the data from the intelligent unit.	9	×	×	×	∆ *3	х	0	a
F151 P151	Data write into intelli-gent unit	WRT PWRT	S1, S2, n, D	Writes the data into the intelligent unit.	9	×	×	Х	∆ *3	×	a	a
F152 P152	Data read from MEWNET-F slave station	RMRD PRMRD	S1, S2, n, D	Reads the data from the intelligent unit at the MEWNET-F (remote I/O) slave station.	9	×	×	×	×	×	a	a
F153 P153	Data write into MEWNET-F slave station	RMWT PRMWT	S1, S2, n, D	Writes the data into the intelligent unit at the MEWNET-F (remote I/O) slave station.	9	×	×	×	×	×	a	a
F155 P155	Sampling	SMPL PSMPL	-	Starts sampling data.	1	×	×	O	∆ *5	∆ *4	0	a
F156 P156	Sampling trigger	STRG PSTRG	-	When the trigger of this instruction turns on, the sampling trace stops.	1	×	×	a	∆ *5	∆ *4	a	a
F157 P157	Time addition	CADD PCADD	S1, S2, D	The time after (S2+1, S2) elapses from the time of (S1+2, S1+1, S1) is stored in (D+2, D+1, D).	9	a	∆ *1	a	a	a	a	a
F158 P158	Time substruction	CSUB PCSUB	S1, S2, D	The time that results from subtracting (S2+1, S2) from the time (S1+2, S1+1, S1) is stored in (D+2, D+1, D).	9	a	∆ *1	a	O	a	O	a
F159 P159	Serial port communication	MTRN PMTRN	S, n, D	This is used to send data to an external device through the specified CPU COM port or MCU COM port.	7	×	×	a	a	a	∆ *2	∆ *2
F161 P161	MCU serial port reception	MRCV PMRCV	S, D1, D2	Data is received from external equipment via the COM port of the specified MCU.	7	×	×	×	Х	Х	∆ *2	∆ *2
BIN ari	thmetic instruction											-
F160 P160	Double word (32-bit) data square root	DSQR PDSQR	S, D	$\sqrt{(S)} \rightarrow (D)$	7	×	×	a	a	a	a	a
	peed counter/Pulse											
FO	High-speed counter and Pulse output controls	MV	S, DT9052	Performs high-speed counter and Pulse output controls according to the control code specified by "S". The control code is stored in DT9052.	5	a	a					
1	Change and read of the elapsed value	DMV	S, DT9044	Transfers (S+1, S) to high-speed counter and Pulse output elapsed value area.	7	a	a					$\sum_{i=1}^{n}$
	of high-speed counter and Pulse output		DT9044, D	Transfers value in high-speed counter and Pulse output elapsed value area to (D+1, D).	7	a	a					\backslash
F166	High-speed counter output set (with channel specification)	HC1S	n, S, Yn	Turns output Yn on when the elapsed value of the built-in high- speed counter reaches the target value of (S+1, S).	11	a	a					

*1) The instruction is available for FP0 T32 type (V2.3 or later).

*2) The instruction is available for FP2/FP2SH Ver. 1.5 or later, and the pulse execution type can be specified. FP10SH cannot be used.

*3) This instruction is available for FP Σ Ver. 2.0 or later.

*4) This instruction is only available for FP-X Ver.2.0 or later.

*5) This instruction is available for FP Σ Ver. 3.10 or later.

Num- ber	Name	Boo- lean	Operand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F167	High-speed counter output reset (with channel specification)	HC1R	n, S, Yn	Turns output Yn off when the elapsed value of the built-in high- speed counter reaches the target value of (S+1, S).	11	a	a	\setminus				
F168	Positioning control (with channel specification)	SPD1	S, n	Outputs a positioning pulse from the specified output (Y0 or Y1) according to the contents of the data table beginning at "S".	5	a	a					
F169	Pulse output (with channel specification)	PLS	S, n	Outputs a pulse from the specified output (Y0 or Y1) according to the contents of the data table beginning at "S".	5	a	a					
F170	PWM output (with channel specification)	PWM	S, n	Performs PWM output from the specified outptu (Y0 or Y1) according to the contents of the data table beginning at "S".	5	a	a					
	peed counter/Pulse ou											
F0	High-speed counter and Pulse output controls	MV	S, DT90052	Performs high-speed counter and Pulse output controls according to the control code specified by "S". The control code is stored in DT90052.	5			a				
F1	Change and read of the elapsed value of high- speed counter	DMV	S, DT90300	Transfers (S+1, S) to high-speed counter and Pulse output elapsed value area (DT90045, DT90044).	7			a				
	and Pulse output		DT90300 , D	Transfers value in high-speed counter and Pulse output elapsed value area (DT90045, DT90044) to (D+1, D).	7			a				
F165	Cam control	CAM0	S	Controls cam operation (on/off patterns of each cam output) according to the elapsed value of the high-speed counter.	3		$\left \right $	a				
F166	Target value much on (with channel specification) (High-speed counter control/Pulse output control)	HC1S	n, S, D	Turns output Yn on when the elapsed value of the high-speed counter or pulse output reaches the target value of (S+1, S).	11			a				
F167	Target value much off (with channel specification) (High-speed counter control/Pulse output control)	HC1R	n, S, D	Turns output Yn off when the elapsed value of the high-speed counter or pulse output reaches the target value of (S+1, S).	11			a				
F171	Pulse output (JOG positioning type 0/1) (Trapezoidal control)	SPDH	S, n	Positioning pulses are output from the specified channel, in accordance with the contents of the data table that starts with S.	5			a				
F172	Pulse output (JOG operation 0 and 1)	PLSH	S, n	Pulse strings are output from the specified output, in accordance with the contents of the data table that starts with S.	5			a				
F173	PWM output (with channel specification)	РШМН	S, n	PWM output is output from the specified output, in accordance with the contents of the data table that starts with S.	5			a				

Num- ber	Name	Boo-lean	Operand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F174	Pulse output (Selectable data table control operation)	SP0H	S, n	Outputs the pulses from the specified channel according to the data table specified by S.	5		\backslash	a				
F175	Pulse output (Linear interpolation)	SPSH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms a straight line.	5			a				
F176	Pulse output (Circular interpolation)	SPCH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms an arc.	5			×				
F177	Pulse output (Home return)	HOME	S, n	Performs the home return according to the specified data table.	7		\backslash	O				
F178	Input pulse measurement (No. of pulses, cycle for input pulses)	PLSM	S1, S2, D	Measures the number of pulses and cycle of pulses to be input to the high-speed counter of the specified channel.	5			a				

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Num- ber	Name	Boo- lean	Operand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
	peed counter/Pulse				1							
F0	High-speed counter and Pulse output controls	MV	S, DT90052	Performs high-speed counter and Pulse output controls according to the control code specified by "S". The control code is stored in DT90052.	5				O	σ		
F1	Change and read of the elapsed value of high- speed counter	DMV	FPΣ: S, DT90044 FP-X: S, DT90300	Transfers (S+1, S) to high-speed counter and Pulse output elapsed value area (DT90045, DT90044).	7				a	a		
	and Pulse output		FP∑: DT90044, D FP-X: DT90300, D	Transfers value in high-speed counter and Pulse output elapsed value area (DT90045, DT90044) to (D+1, D).	7				O	a		
F166	Target value much on (with channel specification)	HC1S	n, S, D	Turns output Yn on when the elapsed value of the built-in high-speed counter reaches the target value of (S+1, S).	11				O	O		
F167	Target value much off (with channel specification)	HC1R	n, S, D	Turns output Yn off when the elapsed value of the built-in high-speed counter reaches the target value of (S+1, S).	11		$\left \right $		O	O		
F171	Pulse output (with channel specification) (Trapezoidal control and home return)	SPDH	S, n	Positioning pulses are output from the specified channel, in accordance with the contents of the data table that starts with S.	5				O	a		
F172	Pulse output (with channel specification) (JOG operation)	PLSH	S, n	Pulse strings are output from the specified output, in accordance with the contents of the data table that starts with S.	5	\setminus	$\left[\right]$	\backslash	O	a		
F173	PWM output (with channel specification)	PWMH	S, n	PWM output is output from the specified output, in accordance with the contents of the data table that starts with S.	5				O	O		
F174	Pulse output (with channel specification) (Selectable data table control operation)	SPOH	S, n	Outputs the pulses from the specified channel according to the data table specified by S.	5				a	a		

*1) The elapsed value area differs depending on used channels.

												-
Num -ber	Name	Boolean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F175	Pulse output (Linear interpolation)	SPSH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms a straight line.	5				∆ *3			
F176	Pulse output (Circular interpolation)	SPCH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms an arc.	5				∆ *3			
Screer	n display instruct	tions										
F180	FP-e screen display registration	SCR	S1, S2, S3, S4	Register the screen displayed on the FP-e.	9	a	х	х	×	×	х	×
F181	FP-e screen display switching	DSP	S	Specify the screen to be displayed on the FP-e.	3	O	х	×	×	×	×	×
Basic	function instruct	ion										
F182	Time constant processing	FILTR	S1, S2, S3, D	Executes the filter processing for the specified input.	9	×	×	O	∆ *5	∆ *4	х	Х
F183	Auxiliary timer (32-bit)	DSTM	S, D	Turn on the specified output and R900D after 0.01 s. × set value.	7	a	a	a	a	a	a	0 *7
Data tr	ransfer instructio	ns		0.01 3. × 361 value.								L
F190 P190	Three 16-bit data move	MV3 PMV3	S1, S2, S3, D	(S1)→(D), (S2)→(D+1), (S3)→(D+2)	10	×	×	O	0	0	O	a
F191 P191	Three 32-bit data move	DMV3 PDMV3	S1, S2, S3, D	$(S1+1, S1) \rightarrow (D+1, D), (S2+1, S2) \rightarrow (D+3, D+2), (S3+1, S3) \rightarrow (D+5, D+4)$	16	×	×	a	a	a	a	a
Logic	operation instruc	tions										
F215 P215	32-bit data AND	DAND PDAND	S1, S2, D	(S1+1, S1) AND (S2+1, S2)→(D+1, D)	7	×	×	a	a	a	a	a
F216 P216	32-bit data OR	DOR PDOR	S1, S2, D	(S1+1, S1) OR (S2+1, S2)→(D+1, D)	12	×	×	a	0	0	0	α
F217 P217	32-bit data XOR	DXOR PDXOR	S1, S2, D	{ <u>(S1+1, S1)</u> AND (S2+1, S2)} OR {(S1+1, S1) AND (S2+1, S2)}→(D+1, D)	12	×	×	O	O	a	O	a
F218 P218	32-bit data XNR	DXNR PDXNR	S1, S2, D	$\begin{array}{c} \{\underline{(S1+1, S1)} \text{ AND } (S2+1, S2)\} \text{ OR} \\ \{(S1+1, S1) \text{ AND } (S2+1, S2)\} \rightarrow (D+1, D) \end{array}$	12	×	×	a	O	a	a	a
F219 P219	Double word (32-bit) data unites	DUNI PDUNI	S1, S2, S3, D	{(S1+1, S1) AND <u>(S3+1, S3)</u> } OR {(S2+1, S2) AND (S3+1, S3)}→(D+1, D)	16	×	×	a	a	a	a	а
	onversion instru											\square
F230 P230	Time data → second conversion	TMSEC PTMSEC	S, D	The specified time data (a date and time) is changed to the second data.	6	×	×	a	∆ *2	∆ *6	∆ *1	∆ *1
F231 P231	Second data→ time conversion	SECTM PSECTM	S, D	The specified second data is changed into time data (a date and time).	6	×	×	a	∆ *2	∆ *6	∆ *1	∆ *1

*1) This instruction is available for FP2/FP2SH Ver. 1.5 or later.FP10SH cannot be used.

*2) This instruction is available for FP Σ 32k type.

*3) This instruction is available for FP Σ C32T2, C28P2, C32T2H and C28P2H.

*4) This instruction is only available for FP-X Ver.2.0 or later. *5) This instruction is available for FP₂ Ver. 3.10 or later.

*6) This instruction is available for FP-X Ver. 1.13 or later.

*7) This instruction is available for FP10SH Ver. 3.10 or later.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F235	16-bit binary	GRY	S, D	Converts the 16-bit binary data of								FP2
P235	data → Gray code conversion	PGRY	*	"S" to gray codes, and the converted result is stored in the "D".	6	×	×	a	a	a	a	a
F236 P236	32-bit binary data → Gray code conversion	DGRY PDGRY	S, D	Converts the 32-bit binary data of $(S+1, S)$ to gray code, and the converted result is stored in the $(D+1, D)$.	8	×	×	a	a	a	a	a
F237 P237	16-bit gray code → binary data conversion	gbin Pgbin	S, D	Converts the gray codes of "S" to binary data, and the converted result is stored in the "D".	6	×	×	a	O	a	O	a
F238 P238	32-bit gray code → binary data conversion	DGBIN PDGBIN	S, D	Converts the gray codes of (S+1, S) to binary data, and the converted result is stored in the (D+1, D).	8	×	×	a	a	a	a	a
F240 P240	Bit line to bit column conversion	COLM PCOLM	S, n, D	The values of bits 0 to 15 of "S" are stored in bit "n" of (D to DC+15).	8	×	×	a	O	a	O	a
F241 P241	Bit column to bit line conversion	LINE	S, n, D	The values of bit "n" of (S) to (S+15) are stored in bits 0 to 15 of "D".	8	×	×	a	0	0	O	a
F250	Binary data → ASCII conversion	ВТОА	S1, S2, n, D	Converts multiple binary data to multiple ASCII data.	12	×	×	a	∆ *1	0	×	×
F251	ASCII → binary data conversion	АТОВ	S1, S2, n, D	Converts multiple ASCII data to multiple binary data.	12	×	×	a	∆ *1	a	×	×
F252	ASCII data check	АСНК	S1, S2, n	Checks the ASCII data strings to be used in F251 (ATOB) instruction.	10	×	×	a	∆ *3	∆ *2	Х	×
	ter strings instructi				-	r	1	1				
F257 P257	Comparing character strings	SCMP	S1, S2	These instructions compare two specified character strings and output the judgment results to a special internal relay.	10	×	×	a	a	a	a	a
F258 P258	Character string coupling	SADD	S1, S2, D	These instructions couple one character string with another.	12	×	×	a	a	a	a	a
F259 P259	Number of characters in a character string	LEN	S, D	These instructions determine the number of characters in a character string.	6	×	×	a	O	O	a	a
F260 P260	Search for character string	SSRC	S1, S2, D	The specified character is searched in a character string.	10	×	×	a	0	0	O	a
F261 P261	Retrieving data from character strings (right side)	RIGHT	S1, S2, D	These instructions retrieve a specified number of characters from the right side of the character string.	8	×	×	a	O	a	O	a
F262 P262	Retrieving data from character strings (left side)	LEFT	S1, S2, D	These instructions retrieve a specified number of characters from the left side of the character string.	8	х	Х	a	Ο	a	a	a
F263 P263	Retrieving a character string from a character string	MIDR	S1, S2, S3, D	These instructions retrieve a character string consisting of a specified number of characters from the specified position in the character string.	10	×	×	a	O	a	O	a
F264 P264	Writing a character string to a character string	MIDW	S1, S2, D, n	These instructions write a specified number of characters from a character string to a specified position in the character string.	12	×	×	a	a	a	a	a
F265 P265	Replacing character strings	SREP	S, D, p, n	A specified number of characters in a character string are rewritten, starting from a specified position in the character string.	12	×	×	a	a	a	a	a

 \bigcirc : Available, X: Not available, \triangle : Not available partially *1) This instruction is available for FP Σ 32k type. *2) This instruction is only available for FP-X Ver.2.0 or later. *3) This instruction is available for FP Σ Ver. 3.10 or later.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
	type data process				<u> </u>	r –		1	r –	1	-	
F270 P270	Maximum value (word data (16-bit))	MAX PMAX	S1, S2, D	Searches the maximum value in the word data table between the "S1" and "S2", and stores it in the "D". The address relative to "S1" is stored in "D+1".	8	∆ *1	×	a	a	a	a	a
F271 P271	Maximum value (double word data (32- bit))	DMAX PDMAX	S1, S2, D	Searches for the maximum value in the double word data table between the area selected with "S1" and "S2", and stores it in the "D". The address relative to "S1" is stored in "D+2".	8	∆ *1	×	a	a	a	a	a
F272 P272	Minimum value (word data (16- bit))	MIN PMIN	S1, S2, D	Searches for the minimum value in the word data table between the area selected with "S1" and "S2", and stores it in the "D". The address relative to "S1" is stored in "D+1".	8	∆ *1	×	a	a	a	a	a
F273 P273	Minimum value (double word data (32-bit))	dmin Pdmin	S1, S2, D	relative to "S1" is stored in "D+1". Searches for the minimum value in the double word data table between the area selected with "S1" and "S2", and stores it in the "D". The address relative to "S1" is stored in "D+2". The total value and the mean value of the word data with sign from the area		∆ *1	×	a	a	a	a	a
F275 P275	Total and mean values (word data (16- bit))	MEAN PMEAN	S1, S2, D	relative to "S1" is stored in "D+2". The total value and the mean value of the word data with sign from the area selected with "S1" to "S2" are obtained and stored in the "D". The total value and the mean value of		∆ *1	×	a	a	a	a	a
F276 P276	Total and mean values (double word data (32-bit))	DMEAN PDMEAN	S1, S2, D	selected with "S1" to "S2" are obtained and stored in the "D". The total value and the mean value of		∆ *1	×	a	a	a	a	a
F277 P277	Sort (word data (16-bit))	SORT PSORT	S1, S2, S3	The word data with sign from the area specified by "S1" to "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8	∆ *1	×	a	a	a	a	a
F278 P278	Sort (double word data (32- bit))	DSORT PDSORT	S1, S2, S3	The double word data with sign from the area specified b "S1" ato "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8	∆ *1	×	a	a	a	a	a
F282 P282	Scaling of 16-bit data	SCAL PSCAL	S1, S2, D	The toutptu value Y is found for the input value X by performing scaling for the given data table.	8	∆ *1	×	a	a	a	a	a
F283 P283	Scaling of 32-bit data	DSCAL PDSCAL	S1, S2, D	The toutptu value Y is found for the input value X by performing scaling for the given data table.	10	×	×	a	a	a	a	a
F284 P284	Inclination output of 16-bit data	RAMP	S1, S2, S3, D	Executes the linear output for the specified time from the specified initial value to the target value.	10	×	×	a	∆ *2	∆ *2	×	×
	type non-linear fu				1	1	1		1	1	r –	
F285 P285	Upper and lower limit control (16-bit data)	LIMT PLIMT	S1, S2, S3, D	When S1>S3, S1→D When S1 <s3, s2→d<br="">When S1<or =="" s3<or="S2," s3→d<="" td=""><td>10</td><td>∆ *1</td><td>×</td><td>a</td><td>a</td><td>a</td><td>a</td><td>a</td></or></s3,>	10	∆ *1	×	a	a	a	a	a

*1) This instruction is available for FP-e Ver.1.2 or later.

*2) This instruction is only available for FP-X Ver.2.0 or later, and FP Σ Ver. 3.10 or later.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
												FP
F286 P286	Upper and lower limit control (32-bit data)	DLIMT PDLIMT	S1, S2, S3, D	$ \begin{array}{l} \text{When } (S1+1,S1) \!$	16	∆ *1	×	a	a	a	a	a
F287 P287	Deadband control (16-bit data)	BAND PBAND	S1, S2, S3, D	When S1>S3, S3–S1→D When S2 <s3, s3–s2→d<br="">When S1<or 0→d<="" =="" s3<or="S2," td=""><td>10</td><td>∆ *1</td><td>×</td><td>a</td><td>O</td><td>0</td><td>a</td><td>a</td></or></s3,>	10	∆ *1	×	a	O	0	a	a
F288 P288	Deadband control (32-bit data)	DBAND PDBAND	S1, S2, S3, D	When $(S1+1, S1)>(S3+1, S3), (S3+1, S3)-(S1+1, S1)\rightarrow(D+1, D)$ When $(S2+1, S2)<(S3+1, S3), (S3+1, S3)-(S2+1, S2)\rightarrow(D+1, D)$ When $(S1+1, S1)<$ or = $(S3+1, S3)<$ or = $(S2+1, S2), 0\rightarrow(D+1, D)$	16	∆ *1	×	a	a	O	O	a
F289 P289	Zone control (16-bit data)	ZONE PZONE	S1, S2, S3, D	When S3<0, S3+S1→D When S3=0, 0→D When S3>0, S3+S2→D	10	∆ *1	×	a	a	a	a	a
F290 P290	Zone control (32-bit data)	DZONE PDZONE	S1, S2, S3, D	When $(S3+1, S3)<0, (S3+1, S3)+(S1+1, S1)\rightarrow(D+1, D)$ When $(S3+1, S3)=0, 0\rightarrow(D+1, D)$ When $(S3+1, S3)=0, (S3+1, S3)+(S2+1, S3)>0, (S3+1, S3)+(S2+1, S2)\rightarrow(D+1, D)$	16	∆ *1	×	a	O	a	O	a
BCD ty	pe real number op	eration instr	uctions									
F300 P300	BCD type sine operation	BSIN PBSIN	S, D	SIN(S1+1, S1)→(D+1, D)	6	×	×	×	×	×	a	a
F301 P301	BCD type cosine operation	BCOS PBCOS	S, D	COS(S1+1, S1)→(D+1, D)	6	×	×	×	×	×	a	a
F302 P302	BCD type tangent operation	BTAN PBTAN	S, D	TAN(S1+1, S1)→(D+1, D)	6	×	×	×	×	×	a	a
F303 P303	BCD type arcsine operation	BASIN PBASIN	S, D	SIN ⁻¹ (S1+1, S1)→(D+1, D)	6	×	×	×	Х	×	a	a
F304 P304	BCD type arccosine operation	BACOS PBACOS	S, D	COS ⁻¹ (S1+1, S1)→(D+1, D)	6	×	×	×	×	×	0	a
F305 P305	BCD type arctangent operation	BATAN PBATAN	S, D	TAN ⁻¹ (S1+1, S1)→(D+1, D)	6	×	×	×	×	×	a	a
Floatin	g-point type real n	umber opera	tion instru	uctions								
F309 P309	Floating-point type data move	FMV PFMV	S, D	(S+1, S)→(D+1, D)	8	0 *2	0 *2	0	0	O	a	0
F310 P310	Floating-point type data addition	F+ PF+	S1, S2, D	(S1+1, S1)+(S2+1, S2)→(D+1, D)	14	0 *2	2 () *2	0	a	a	a	a
F311 P311	Floating-point type data subtraction	F- PF-	S1, S2, D	(S1+1, S1)–(S2+1, S2)→(D+1, D)	14	0 *2	0 *2	0	O	a	a	a
F312 P312	Floating-point type data multiplication	F* PF*	S1, S2, D	(S1+1, S1)×(S2+1, S2)→(D+1, D)			0 *2	0	0	0	a	a
F313 P313	Floating-point type data division	F% PF%	S1, S2, D	(S1+1, S1)÷(S2+1, S2)→(D+1, D)	14	0 *2	0 *2	0	a	a	a	a

*1) This instruction is available for FP-e Ver.1.2 or later.

*2) This instruction is available for FP-e Ver.1.21 or later, FP0 V2.1 or later.

Num- ber	Name	Boo- lean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F314 P314	Floating-point type data sine operation	SIN PSIN	S, D	SIN(S+1, S)→(D+1, D)	10	0 *1	0 *1	O	Ο	O	0	a
F315 P315	Floating-point type data cosine operation	COS PCOS	S, D	COS(S+1, S)→(D+1, D)	10	0 *1	0 *1	a	O	a	Ο	a
F316 P316	Floating-point type data tangent operation	TAN PTAN	S, D	TAN(S+1, S)→(D+1, D)	10	0 *1	0 *1	a	a	a	a	a
F317 P317	Floating-point type data arcsine operation	ASIN PASIN	S, D	SIN ⁻¹ (S+1, S)→(D+1, D)	10	0 *1	0 *1	a	a	a	a	a
F318 P318	Floating-point type data arccosine operation	ACOS PACOS	S, D	COS ⁻¹ (S+1, S)→(D+1, D)	10	0 *1	0 *1	a	O	a	O	a
F319 P319	Floating-point type data arctangent operation	ATAN PATAN	S, D	TAN ⁻¹ (S+1, S)→(D+1, D)	10	0 *1	0 *1	a	a	a	a	a
F320 P320	Floating-point type data natural logarithm	LN PLN	S, D	LN(S+1, S)→(D+1, D)	10	0 *1	0 *1	a	a	a	a	a
F321 P321	Floating-point type data exponent	EXP PEXP	S, D	EXP(S+1, S)→(D+1, D)	10	0 *1	0 *1	a	a	a	a	a
F322 P322	Floating-point type data logarithm	LOG PLOG	S, D	LOG(S+1, S)→(D+1, D)	10	0 *1	0 *1	a	O	a	O	a
F323 P323	Floating-point type data power	PWR PPWR	S1, S2, D	(S1+1, S1) ^ (S2+1, S2)→(D+1, D)	14	0 *1	0 *1	a	O	a	0	a
F324 P324	Floating-point type data square root	FSQR PFSQR	S, D	$\sqrt{(S+1, S)} \rightarrow (D+1, D)$	10	0 *1	0 *1	a	O	a	0	a
F325 P325	16-bit integer data to floating-point type data conversion	FLT PFLT	S, D	Converts the 16-bit integer data with sign specified by "S" to real number data, and the converted data is stored in "D".	6	0 *1	0 *1	a	a	a	O	a
F326 P326	32-bit integer data to floating-point type data conversion	DFLT PDFLT	S, D	Converts the 32-bit integer data with sign specified by (S+1, S) to real number data, and the converted data is stored in (D+1, D).	8	0 *1	0 *1	a	O	a	a	a
F327 P327	Floating-point type data to 16-bit integer con-version (the largest inte-ger not ex-ceeding the floating-point type data)	INT PINT	S, D	Converts real number data specified by (S+1, S) to the 16- bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in "D".	8	0 *1	0 *1	a	a	a	O	a
F328 P328	Floating-point type data to 32-bit integer con-version (the largest inte-ger not ex-ceeding the floating-point type data)	DINT PDINT	S, D	Converts real number data specified by (S+1, S) to the 32- bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in (D+1, D).	8	0 *1	O *1	a	α	a	a	a

*1) This instruction is available for FP-e Ver.1.21 or later, FP0 V2.1 or later.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F329 P329	Floating-point type data to 16-bit integer con- version (rounding the first decimal point down to integer)	FIX PFIX	S, D	Converts real number data specified by (S+1, S) to the 16-bit integer data with sign (rounding the first decimal point down), and the converted data is stored in "D".	8	0 *1	0 *1	a	a	a	a	a
F330 P330	Floating-point type data to 32-bit integer con- version (rounding the first decimal point down to integer)	DFIX PDFIX	S, D	Converts real number data specified by (S+1, S) to the 32-bit integer data with sign (rounding the first decimal point down), and the converted data is stored in (D+1, D).	8	0 *1	0 *1	a	a	a	a	a
F331 P331	Floating-point type data to 16-bit integer con- version (rounding the first decimal point off to integer)	ROFF PROFF	S, D	Converts real number data specified by (S+1, S) to the 16-bit integer data with sign (rounding the first decimal point off), and the converted data is stored in "D".	8	0 *1	0 *1	a	O	a	a	a
F332 P332	Floating-point type data to 32-bit integer con- version (rounding the first decimal point off to integer)	DROFF PDROFF	S, D	Converts real number data specified by (S+1, S) to the 32-bit integer data with sign (rounding the first decimal point off), and the converted data is stored in (D+1, D).	8	0 *1	0 *1	a	a	a	a	a
F333 P333	Floating-point type data round- ding the first decimal point down	FINT PFINT	S, D	The decimal part of the real number data specified in (S+1, S) is rounded down, and the result is stored in (D+1, D).	8	0 *1	0 *1	a	a	a	a	a
F334 P334	Floating-point type data round- ding the first decimal point off	FRINT PFRINT	S, D	The decimal part of the real number data stored in (S+1, S) is rounded off, and the result is stored in (D+1, D).	8	0 *1	0 *1	a	a	a	0	a
F335 P335	Floating-point type data sign changes	F+/- PF+/-	S, D	The real number data stored in (S+1, S) is changed the sign, and the result is stored in (D+1, D).	8	0 *1	0 *1	a	a	a	a	a
F336 P336	Floating-point type data absolute	FABS PFABS	S, D	Takes the absolute value of real number data specified by (S+1, S), and the result (absolute value) is stored in (D+1, D).	8	0 *1	0 *1	o	Ο	O	a	a
F337 P337	Floating-point type data degree → radian	RAD PRAD	S, D	The data in degrees of an angle specified in (S+1, S) is converted to radians (real number data), and the result is stored in (D+1, D).	8	0 *1	0 *1	a	a	a	a	a
F338 P338	Floating-point type data radian → degree	DEG PDEG	S, D	The angle data in radians (real number data) specified in (S+1, S) is converted to angle data in degrees, and the result is stored in (D+1, D).	8	0 *1	0 *1	a	a	a	O	a
	g-point type real numb			instructions								
F345 P345	Floating-point type data compare	FCMP PFCMP	S1, S2	$(S1+1, S1)>(S2+1, S2) \rightarrow R900A:$ on $(S1+1, S1)=(S2+1, S2) \rightarrow R900B$ on $(S1+1, S1)<(S2+1, S2) \rightarrow R900C:$ on	10	×	×	a	a	a	a	a
F346 P346	Floating-point type data band compare	FWIN PFWIN	S1, S2, S3	$(S1+1, S1)>(S3+1, S3) \rightarrow R900A:$ on (S2+1, S2)<or = $(S1+1, S1)<$ or = $(S3+1, S3) \rightarrow R900B$ on $(S1+1, S1)<(S2+1, S2) \rightarrow R900C:$ on	14	×	×	a	a	a	a	a

*1) This instruction is available for FP-e Ver.1.21 or later, FP0 V2.1 or later.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F347 P347	Floating-point type data upper and lower limit control	FLIMT PFLIMT	S1, S2, S3, D	$ \begin{array}{l} \mbox{When } (S1+1,S1) \mbox{>} (S3+1,S3), \\ (S1+1,S1) \mbox{-} (D+1,D) \\ \mbox{When } (S2+1,S2) \mbox{<} (S3+1,S3), \\ (S2+1,S2) \mbox{-} (D+1,D) \\ \mbox{When } (S1+1,S1) \mbox{<} or = (S3+1, \\ S3) \mbox{<} or = (S2+1,S2), (S3+1, \\ S3) \mbox{-} (D+1,D) \\ \end{array} $	17	×	×	a	a	а	O	a
F348 P348	Floating-point type data dead-band control	FBAND PFBAND	S1, S2, S3, D	$ \begin{array}{l} \mbox{When } (S1+1,S1) \mbox{>} (S3+1,S3), \\ (S3+1,S3) (S1+1,S1) (D+1,D) \\ \mbox{When } (S2+1,S2) \mbox{<} (S3+1,S3), \\ (S3+1,S3) (S2+1,S2) (D+1,D) \\ \mbox{When } (S1+1,S1) \mbox{$	17	×	×	a	α	a	Ō	a
F349 P349	Floating-point type data zone control	FZONE PFZONE	S1, S2, S3, D	When $(S3+1, S3)<0.0$, $(S3+1, S3)+(S1+1, S1)\rightarrow(D+1, D)$ When $(S3+1, S3)=0.0, 0.0\rightarrow (D+1, D)$ When $(S3+1, S3)>0.0$, $(S3+1, S3)+(S2+1, S2)\rightarrow(D+1, D)$	17	×	×	a	a	a	O	a
F350 P350	Floating-point type data maxi-mum value	FMAX PFMAX	S1, S2, D	Searches the maximum value in the real number data table between the area selected with "S1" and "S2", and stores it in the (D+1, D). The address relative to "S1" is stored in (D+2).	8	×	×	×	×	×	a	a
F351 P351	Floating-point type data mini-mum value	FMIN PFMIN	S1, S2, D	Searches the minimum value in the real number data table between the area selected with "S1" and "S2", and stores it in the (D+1, D). The address relative to "S1" is stored in (D+2).	8	×	×	×	×	×	a	a
F352 P352	Floating-point type data total and mean values	FMEAN PFMEAN	S1, S2, D	The total value and the mean value of the real number data from the area selected with "S1" to "S2" are obtained. The total value is stored in the (D+1, D) and the mean value is stored in the (D+3, D+2).	8	×	×	×	×	×	Ō	a
F353 P353	Floating-point type data sort	FSORT PFSORT	S1, S2, S3	The real number data from the area speciified by "S1" to "S2" are stored in ascending order (the smallest word is first) or descending order (the largest word is first).	8	×	×	×	×	×	O	a
F354 P354	Scaling of real number data	FSCAL PFSCAL	S1, S2, D	Scaling (linearization) on a real number data table is performed, and the output (Y) to an input value (X) is calculated.	12	×	×	a	∆ *2	∆ *3	∆ *1	∆ *1

*1) This instruction is available for FP2/FP2SH Ver. 1.5 or later. FP10SH cannot be used.

*2) This instruction is available for FP Σ 32k type.

*3) This instruction is available for FP-X Ver. 1.13 or later.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
												FP2\$
	eries processing i		-						1		1	1
F355	PID processing	PID	S	PID processing is performed depending on the control value (mode and parameter) specified by (S to S+2) and (S+4 to S+10), and the result is stored in the (S+3).	4	a	0 *3	a	a	σ	a	a
F356	Eaay PID	EZPID	S1,	Temperature control (PID) can be				-		Δ		
			S2, S3, S4	easily performed using the image of a temperautre controller.	10	×	×	a	*2	*2	×	×
Comp	are instructions		00, 04		I	I	I	I	I	I	I	1
F373	16-bit data	DTR	S, D	If the data in the 16-bit area								
P373	revision	PDTR	-, -	specified by "S" has changed								
	detection			since the previous execution,	6	×	×	a	a	o	a	a
				internal relay R9009 (carry flag)	Ŭ					0		0
				will turn on. "D" is used to store								
F374	32-bit data	DDTR	S, D	the data of the previous execution. If the data in the 32-bit area		<u> </u>	<u> </u>	<u> </u>				
F374 P374	32-bit data	PDDTR	3, D	specified by (S+1, S) has changed								
	detection			since the previous execution,								
				internal relay R9009 (carry flag)	6	\times	\times	a	0	O	a	a
				will turn on. (D+1, D) is used to								
				store the data of the previous								
				execution.								
	egister bank proc			la deve na sistem (10 to 10) h and		1	1	1	1		1	
F410 P410	Setting the index regis-ter	SETB PSETB	n	Index register (I0 to ID) bank number change over.	4	×	×	×	×	×	×	a
F410	bank number	FJEID			4				^			
F411	Changing the	CHGB	n	Index register (I0 to ID) bank								
P411	index regis-ter	PCHGB		number change over with								0
	bank number			remembering preceding bank	4	×	×	×	×	×	×	a
				number.								
F412	Restoring the	POPB	-	Changes index register (I0 to ID)								
P412	index regis-ter	PPOPB		bank number back to the bank	2	\times	\times	×	×	×	\times	0
	bank number			before F411 (CHGB)/P411 (PCHGB) instruction.								
File red	gister bank proces	sina instruct	tions		I		I		1		1	1
F414	Setting the file	SBFL	n	File register bank number change								
P414	register bank	PSBFL		over.	4	\times	\times	×	\times	×	\times	∆ *1
	number											
F415	Changing the	CBFL	n	File register bank number change								
P415	file register	PCBFL		over with remembering preceding	4	×	×	×	×	×	×	*1
F416	bank number Restoring the	PBFL	_	bank number. Changes file register bank number								
P416 P416	file register	PBFL	-	back to the bank before F415	2	×	×	×	×	×	×	\triangle
1 - 10	bank number			(CBFL)/P415 (PCBFL) instruction.	2	\sim	\cap	\cap	\cap	\cap	\cap	*1
-		· · · · · · · · · · · · · · · · · · ·	1			1		1	L		L	

*1) This instruction is not available for FP10SH.

*2) This instruction is available for FP-X V.1.20 or later, and FP Σ 32k type.

*3) This instruction is available for FP0 V2.1 or later.

14.4 Table of Error codes

Difference in ERROR display

There are differences in the way errors are displayed depending on the model.

Model	Display		Display method
FP1,FP-M,FP2,FP3,FP10SH	LED	ERROR.	Continually lit
FP Σ ,FP0, FP0R, FP-X	LED	ERROR/ALARM	Flashes/contunually lit
FP-e	Screen display	ERR.	Continually lit

Error Confirmation When ERROR Turns ON

When the "ERROR" on the control unit (CPU unit) turns on or flashes, a self-diagnostic error or syntax check error has occurred. Confirm the contents of the error and take the appopriate steps.

-Error Confirmation Method

Procedure:1.Use the programming tool software to call up the error code.

- By executing the "STATUS DISPLAY", the error code and content of error are displayed.
- 2. Check the error contents in the table of error codes using the error code ascertained above.

-Syntax check error

This is an error detected by the total check function when there is a syntax error or incorrect setting written in the program. When the mode selector is switched to the RUN mode, the total check function automatically activates and eliminates the possibility of incorrect operation from syntax errors in the program.

When a syntax check error is detected

-ERROR turns on or flashes.

- -Operation will not begin even after swirching to the RUN mode.
- -Remote operation cannot be used to change to RUN mode.

Clearing a syntax check error

By changing to the PROG.mode, the error will clear and the ERROR will turn off.

Steps to take for syntax error

Change to the PROG. mode, and then execute the total check function while online mode with the programming tool connected. This will call up the content of error and the address where the error occurred.

Correct the program while referring to the content of error.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

-Self-diagnostic Error

This error occurs when the control unit (CPU unit) self-diagnostic function detects the occurrence of an abnormality in the system. The self-diagnostic function monitors the memory abnormal detection, I/O abnomal detection, and other devices.

When a self-diagnostic error occurs

- The ERROR turns on or flashes.

- The operation of the control unit (CPU unit) might stop depending on the contect of error and the system

register setting.

- The error codes will be stored in the special data register DT9000(DT90000).

- In the case of operation error, the error address will stored in the DT9017(DT90017) and DT9018(DT90018).

Clearing the self-diagnostic error

At the "STATUS DISPLAY", execute the "error clear". Error codes 43 and higher can be cleared. -You can use the initialize/test switch to clear an error. However, this will also clear the contents of operation memory.

-Errors can also be cleared by turning off and on the power while in the PROG.mode.

However, the contents of operation memory, not stored with the hold type data, will also be cleared. -The error can also be cleared depending on the self-diagnostic error set instruction F148(ERR).

Steps to take for self-diagnostic error

The steps to be taken will differ depending on the error contents. For more details, use the error code obtained above and consult the table of aself-diagnostic error codes.

MEWTOCOL-COM Transmission Errors

These are error codes from a PC or other computer device that occur during an abnormal response when communicating with a PLC using MEWTOCOL-COM.

Table of Syntax Check Error

Error code	Name	Opera- tion status	Description and steps to take		FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E1	Syntax error	Stops	A program with a syntax error has been written. ⇒ Change to PROG. mode and correct the error.	A	A	A	A	A	A	A	A
E2 (Note)	Duplicated output error	Stops	Two or more OT(Out) instructions and KP(Keep) instructions are programmed using the same relay.Also occurs when using the same timer/counter number. ⇒ Change to PROG. mode and correct the program so that one relay is not used for two or more OT instructions,Or, set the duplicated output to "enable" in system register20. A timer/counter instructon double definition error will be detected even if double output permission has been selected.	A	A	A	A	A	A	A	A
E3	Not paired error	Stops	For instructions which must be used in a pair such as jump (JP and LBL), one instruction is either missing or in an incorrect position. ⇒ Change to PROG. mode and enter the two instructions which must be used in a pair in the correct positions.	А	A	А	A	A	A	A	A
E4	Parameter mismatch error	Stops	An instruction has been written which does not agree with system register settings. For example, the number setting in a program does not agree with the timer/counter range setting. ⇒ Change to PROG. mode, check the system register settings, and change so that the settings and the instruction agree.	A	A	A	A	A	A	A	A
E5 (Note)	Program area error	Stops	An instruction which must be written in a specific area (main program area or subprogram area) has been written to a different area (for example, a subroutine SUB to RET is placed before an ED instruction). \Rightarrow Change to PROG. mode and enter the instruction into the correct area.	A	A	A	A	A	A	A	A

A:Available

Note) This error is also detected if you attempt to execute a rewrite containing a syntax error during RUN. In this case, nothing will be written to the CPU and operation will continue.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E6	Compile memory full error	Stops	The program is too large to compile in the program memory. ⇒ Change to PROG. mode and reduce the total number of steps for the program. -FP10SH If memory expansion is possible,compilation will become possible when the memory is expanded.	A	A	A	A	A		A	A
E7	High-level instruction type error	Stops	In the program, high-level instructions, which execute in every scan and at the leading edge of the trigger, are programmed to be triggered by one contact. (e.g. F0 (MV) and P0 (PMV) are programmed using the same trigger continuously.) ⇒ Correct the program so that the high-level instructions executed in every scan and only at the leading edge are triggered separately.			A	A	A	A	A	A
E8	High-level instruction operand combina- tion error	Stops	There is an incorrect operand in an instruction which requires a specific combination operands (for example, the operands must all be of a certain type). \Rightarrow Enter the correct combination of operands.	A	A	А	A	A	A	A	A
E9	No program error	Stops	Program may be damaged. \Rightarrow Try to send the program again.							A	A
E10	Rewrite during RUN syntax error	Conti- nues	When inputting with the programming tool software,a delection,addition or change of order of an instruction(ED,LBL,SUB,RET,INT,IRET,SSTP ,and STPE) that cannot perform a rewrite during RUN is being attempted. Nothing is written to the CPU.						A	A	A

Table of Self-Diagnostic Error

Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E20	CPU error	Stops	Probably a hardware abnormality ⇒Please contact your dealer.						А	А	А
E21	RAM error1										
E22	RAM error2										
E23	RAM error3	Stops	Probably an abnormality in the internal RAM. \Rightarrow Please contact your dealer.						А	А	А
E24	RAM										
E25	error4 RAM										
	error5 Master										
E25	memory model unmatch error	Stops	The models of master memories are different. Use the master memories created with the same model.					A *1)			
			FP-e,FP0,FP0R,FP Σ ,and FP1 C14,C16:Probably a hardware abnormality. \Rightarrow Please contact your dealer.								
E26	User's	Stops	FP-X: When the master memory cassette is mounted, the master memor cassette may be damaged. Remove the master memory, and check whether the ERROR turns off. When the ERROR turned off, rewrite the master memory as its contents are damaged, and use it again. When the ERROR does not turn off, please contact your dealer.	А	А	A	A	А	A	А	A
220	ROM error	Stops	FP1 C24,C40,C56,C72,and FP-M: Probably an abnormality in the memory unit \Rightarrow Program the memory unit again and try to operate. If the same error is detected, try to operate with another memory unit.	~	~	~	~	ζ.	~	C .	~
			 FP2,FP2SH,FP10SH,and FP3: There may be a problem with the installed ROM. -ROM is not installed. -ROM contens are damaged. -Program size stored on the ROM is larger than the capacity of the ROM ⇒Check the contents of the ROM 								
E27	Unit installation error	Stops	Units installed exceed the limitations.(i.e.,4 or more link units) ⇒ Turn off the power and re-configure units referring to the hardware manual.			A	A	A	A	A	A
E28	System register error	Stops	Probably an abnormality in the system register. ⇒ Check the system register setting or initialize the system registers.						A		

*1) This error occurs on FP-X Ver2.0 or later.

Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E29	Configu- ration parameter error	Stops	A parameter error was detected in the MEWNET-W2 configuration area. Set a correct parameter.						A	A	
E30	Interrupt error 0	Stops	Probably a hardware abnormality. ⇒ Please contact your dealer.								
E31	Interrupt error 1	Stops	An interrupt occurred without an interrupt request . A hardware problem or error due to noise is possible. ⇒ Turn off the power and check the noise conditions.	A	A	A	A	A	A	A	A
E32	Interrupt error 2	Stops	There is no interrupt program for an interrupt which occurred. ⇒ Check the number of the interrupt program and change it to agree with the interrrupt request.	А	A	А	A	A	A	A	A
E33	Multi-CPU data unmatch error	CPU2 Stops	This error occurs when a FP3/FP10SH is used as CPU2 for a multi-CPU system. \Rightarrow Refer to "Multi-CPU system Manual".							A	A
E34	I/O status error	Stops	An abnormal unit is installed. -FP Σ , FP0R(FP0R mode),FP-X, FP2,FP2SH and FP10SH: Check the contents of special data register DT90036 and locate the abnormal unit.Then turn off the power and replace the unit with a new one. -FP3: Check the contents of special data register DT9036 and locate the abnormal unit. Then turn off the power and replace the unit with a new one.			А	А	A		A	А
E35	MEWNET-F slave illegal unit error	Stops	A unit, which cannot be installed on the slave station of the MEWNET-F link system,is installed on the slave station. ⇒Remove the illegal unit from the slave station.						A	A	А
E36	MEWNET-F (remore I/O) limitation error	Stops	The number of slots or I/O points used for MEWNET-F(remote I/O) system exceeds the limitation. ⇒Re-configure the system so that the number of slots and I/O points is within the specified range.						A	A	A
E37	MEWNET-F I/O mapping error	Stops	I/O overlap or I/O setting that is over the range is detected in the allocated I/O and MEWNET-F I/O map. ⇒Re-configure the I/O map correctly						A	A	А

Error code	Name	Opera- tion status	Description and steps to take		FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E38	MEWNET-F slave I/O terminal mapping error	Stops	I/O mapping for remote I/O terminal boards,remote I/O terminal units and I/O link is not correct. ⇒Re-configure the I/O map for slave stations according to the I/O points of the slave stations.						A	A	A
E39	IC card read error	Stops	 When reading in the program from the IC memory card(due to automatic reading because of the dip switch setting or program switching due to F14(PGRD) instruction): IC memory card is not installed. There is no program file or it is damaged. Writing is disabled. There is an abnormality in the AUTOEXEC.SPG file. Program size stored on the card is larger than the capacity of the CPU. ⇒Install an IC memory card that has the program proterly recorded and execute the read once again. 							А	A
E40	I/O error	Sele- ctable	Abnormal I/O unit. FPΣ, FP-X: Check the contents of special data register DT90002 and abnormal FPΣ expansion unit (application cassette for FP-X). Then check the unit. FP2 and FP2SH: Check the contents of special data registers DT90002,DT90003 and abnormal I/O unit.Then check the unit. Selection of operation status using system register21: -to continue operation,set 1 -to stop operation,set 0 Verification is possible in FPWIN GR/Pro at"I/O error" in the status display function. MEWNET-TR communication error FP3 and FP10SH: Check the contents of special data registers(FP3:DT9002,DT9003,FP10SH:DT9 0002,DT90003) and the erroneous master unit and abnormal I/O unit. Then check the unit. Selection of operation status using system register21: -to stop operation,set 1 -to stop operation,set 1 -to stop operation,set 0 Verification is possible in FPWIN GR/Pro at"I/O error" in the status display function.				A	A	A	A	A

Error code	Name	Opera- tion status	Description and steps to take		FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E41	Intelligent unit error	Selec- table	An abnormality in an intelligent unit. $FP\Sigma$, $FP-X$: Check the contetns of special data register "DT90006" and locate the abnormal FP intelligent unit (application cassette for FP-X). FP2, $FP2SH$, and $FP10SH$: Check the contents of special data registers DT90006, DT90007 and locate the abnormal intelligent unit. Then check the unit referring to its manual Selection of operation status using system register22: -to continue operation, set 1 -to stop operation, set 0 FP3: Check the contents of special data registers DT9006, DT9007 and locate the abnormal intelligent unit. Then check the unit referring to its manual Selection of operation status using system register22: -to continue operation status using system register22: -to continue operation, set 1 -to stop operation, set 0 Verification is possible in FPWIN GR/Pro at"I/O error" in the status display function.				A	A	A	A	A
E42	I/O unit verify error	Selec- table	 I/O unit(Expansion unit) wiring condition has changed compared to that at time fo powerup. ⇒ Check the contents of special data register (FP0: DT9010, FPΣ, FP-X: DT90010,DT90011) and locate the erroneous expansion unit. It checks whether an expansion connector is in agreement. ⇒ Check the contents of special data register (FP2,FP2SH,and FP10SH:DT90010,DT90011,FP3 DT9010,DT9011) Selection of operation status using system register23: to continue operation,set 1 to stop operation,set 0 Verification is possible in FPWIN GR/Pro at"I/O error" in the status display function. 		A	A	А	A	A	A	A

Error code	Name	Opera- tion status	Description and steps to take		FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E43	43 System watching dog timer error Selec- table specified time. Selection of operative register24: -to continue operation		\Rightarrow Check the program and modify it so that the program can execute a scan within the specified time. Selection of operation status using system							A	A
E44	Slave staiton connecting time error for MEWNET-F system	Selec- table	The time required for slave station connection exceeds the setting of the system register 35. Selection of operation status using system register25: -to continue operation,set 1 -to stop operation,set 0						A	A	A
E45	Operation error	Selec- table	Operation became impossible when a high- level instruction was executed. Selection of operation status using system register26: -to continue operation,set K1 -to stop operation,set K0 The address of operation error can be confirmed in either special data registers DT9017 and DT9018, or DT90017 and DT90018. (It varies according to the model to be used.) DT9017, DT9018: FP-e, FP0, FP0R(FP0 mode) DT90017, DT90018: FP Σ , FP-X, FP0R(FP0R mode), FP2, FP2SH, FP10SH Verification is possible in FPWIN GR/Pro at"I/O error" in the status display function.	A	A	A	A	A	A	A	A

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Error code	Name	Opera- tion status	Description and steps to take		FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
		Selec- table	S-LINK error Occurs only in FP0-SL1 When one of the S-LINK errors (ERR1, 3 or 4) has been deteced,error code E46 (remote I/O (S-LINK) communication error) is stored. Selection of operation status using system register27: -to continue operation,set K1 -to stop operation,set K0		A						
E46	Remote I/O commu- nication error	Selec- table	MEWNET-F communication error A communication abnormally was caused by a transmission cable or during the power- down of a slave station. FP2, FP2SH, and FP10SH: Check the contents of special data registers DT90131 to DT90137 and locate the abnormal slave station and recover the communication condition. FP3: Check the contents of special data registers DT9131 to DT9137 and locate the abnormal slave station and recover the communication condition. Selection of operation status using system register27: -to continue operation,set K1 -to stop operation,set K0						A	A	A
E47	MEW- NET-F attribute error	Selec- table	In the unit on the slave station, an abnormallty such as: -missing unit -abnormal intelligent unit was detected. FP2, FP2SH, and FP10SH: Check the contents of special data registers DT90131 to DT90137 and locate the abnormal slave station and recover the slave condition. FP3: Check the contents of special data registers DT9131 to DT9137 and locate the abnormal slave station and recover the slave condition. Selection of operation status using system register28: -to continue operation,set 1 -to stop operation,set 0						A	A	A
E49	Expansion unit power supply sequence error	Stops	The power supply for the expansion unit was turned on after the control unit. Turn on the power supply for the expansion unit at the same time or before the control unit is turend on.					А			
E50	Backup battery errror	Conti- nues	The voltage of the backup battery lowered or the backup battery of conrol unit is not installed. ⇒ Check the installation of the backup battery and then replace battery if necessary. By setting the system register 4, you can disregard this self-diagnostic error.				A	A	A	A	A

Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E51	MEWNET-F terminal station error	Conti- nues	Terminal station setting was not properly performed. Check stations at both ends of the communication path,and set them in the terminal station using the dip switches.						A	A	A
E52	MEWNET-F I/O update synchro- nous error	Conti- nues	Set the INITIALIZE/TEST selecto1inmjvbgycfrde892 r to the INITIALIZE position while keeping the mode selector in the RUN position.If the same error occurs after this,please contact your dealer.						A	A	A
E53	Multi-CPU I/O regis- tration error (CPU2 only)	Conti- nues	Abnormality was detected when the multi- CPU system ws used. Please contact your dealer.								A
E54	IC memory card back- up battery error	Conti- nues	The voltage of the backup battery for the IC memory card lowered. The BATT.LED does not turn on. Charge or replace the backup battry of IC memory card.(The contents of the IC memory card cannot be guaranteed.)							A	A
E55	IC memory card back- up battery error	Cont- inues	The voltage of the backup battery for IC memory card lowers. The BATT.LED does not turn on. Charge or replace the backup battery of IC memory card. (The contents of the IC memory card cannot be guaranteed.)							A	A
E56	Incompat- ible IC memory card error	Cont- inues	The IC memory card installed is not compatible. Replace the IC memory card compatible with FP2SH/FP10SH.							A	A
E57	No unit for the configu- ration	Conti- nues	MEWNET-W2/MCU The MEWNET-W2 link unit or MCU(Multi communication unit) is not installed in the slot specified using the configuration data. Either install a unit in the specified slot or change the parameter.						A	A	
E100 to E199	Self- diagnostic error set	Stop	The error specified by the F148 (ERR)/P148(PERR) instruction is occurred. \Rightarrow Take steps to clear the error condition according to the specification you chose.	A	A	A	A	A	A		
E200 to E299	by F148 (ERR)/P148 (PERR) instruction	Conti- nues		A	A	A	A	A	A	ailab	

■ Table of MEWTOCOL-COM Communication Error

Error code	Name	Description
!21	NACK error	Link system error
!22	WACK error	Link system error
!23	Unit No. overlap	Link system error
!24	Transmission format error	Link system error
!25	Link unit hardware error	Link system error
!26	Unit No. setting error	Link system error
!27	No support error	Link system error
!28	No response error	Link system error
!29	Buffer closed error	Link system error
!30	Time-out error	Link system error
!32	Transmission impossible error	Link system error
!33	Communication stop	Link system error
!36	No destination error	Link system error
!38	Other communication error	Link system error
!40	BCC error	A transfer error occurred in the received data.
!41	Format error	A command was received that does not fit the format.
!42	No support error	A command was received that is not supported.
!43	Multiple frames	A different command was received when processing multiple
!43	procedure error	frames.
!50	Link setting error	A route number that does not exist was spacified. Verify the route number by designating the transmission station.
	Transmission	Transmission to anather device not possible because
!51	time-out error	transmissition buffer is congested.
!52	Transmit disable error	Transmission processing to another device is not possible.(Link unit runaway,etc.)
!53	Busy error	Command process cannot be received because of multiple frame processing.Or,cannot be received because command being processed is congested.
!60	Parameter error	Content of spacified parameter does not exist or cannot be used.
!61	Data error	There was a mistake in the contact,data area,data number desigination,size designation,range,or format designation.
!62	Registration over error	Operation was does when number of registrations was exceeded or when there was no registration.
!63	PC mode error	PC command that cannot be processed was executed during RUN mode.

Error code	Name	Description
!64	External memory error	An abnormality occurred when loading RAM to ROM/IC memory card.There may be a problem with the ROM or IC memory card. -When loading,the specified contents exceeded the capacity. -Write error occurs. -ROM or IC memory card is not installed. -ROM or IC memory card does not conform to specifications -ROM or IC memory card board is not installed.
!65	Protect error	A program or system register write operation was executed when theb protect mode (password setting or DIP switch,etc.)or ROM operation mode was being used.
!66	Address error	There was an error in the code format of the address data. Alsi.when exceeded or insufficient of address data,there was a mistake in the range designation.
!67	No program error and No data error	Cannot be read because there is no program in the program area or the memory contains an error.Or,reading was attempted of data that was not registered.
!68	Rewrite during RUN error	When inputting with programming tool software,editing of an instruction (ED,SUB,RET,INT,IRET,SSTP,and STPE) that cannot perform a rewrite during RUN is being attempted. Nothing is written to the CPU.
!70	SIM over error	Program area was exceeded during a program write process.
!71	Exclusive access control error	A command that cannot be processed was executed at the same time as a command being processed.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

14.5 MEWTOCOL-COM Communication Commands

Command name	Code	Description
	RC	Reads the on and off status of contact.
Read contact area	(RCS)	- Specifies only one point.
Read contact area	(RCP)	- Specifies multiple contacts.
	(RCC)	- Specifies a range in word units.
	WC	Turns contacts on and off.
Write contact area	(WCS)	 Specifies only one point.
White contact area	(WCP)	 Specifies multiple contacts.
	(WCC)	- Specifies a range in word units.
Read data area	RD	Reads the contents of a data area.
Write data area	WD	Writes data to a data area.
Read timer/counter set value area	RS	Reads the value set for a timer/counter.
Write timer/counter set value area	WS	Writes a timer/counter setting value.
Read timer/counter ellapsed value area	RK	Reads the timer/counter elapsed value.
Write timer/counter elapsed value area	WK	Writes the timer/counter elapsed value.
Register or Reset contacts monitored	MC	Registers the contact to be monitored.
Register or Reset data monitored	MD	Registers the data to be monitored.
Monitoring start	MG	Monitors a registered contact or data using the code "MC or MD".
Preset contact area (fill command)	SC	Embeds the areaof a specified range in a 16- point on and off pattern.
		Writes the same contents to the data area of a
Preset data area (fill command)	SD	specified range.
Read system register	RR	Reads the contents of a system register.
Write system register	WR	Specifies the contents of a system register.
Read the status of PLC	RT	Reads the specifications of the programmable
		controller and error codes if an error occurs.
Remote control	RM	Switches the operation mode of the
		programmable controller.
Abort	AB	Aborts communication.

Table of MEWTOCOL-COM commands

14.6 Hexadecimal/Binary/BCD

Desimal	Usysdesimal	Dinem dete	BCD data				
Decimal	Hexadecimal	Binary data	(Binary Coded Decimal)				
0	0000	0000000 0000000	0000 0000 0000 0000				
1	0001	0000000 0000001	0000 0000 0000 0001				
2	0002	0000000 0000010	0000 0000 0000 0010				
3	0003	0000000 0000011	0000 0000 0000 0011				
4	0004	0000000 00000100	0000 0000 0000 0100				
5	0005	0000000 00000101	0000 0000 0000 0101				
6	0006	0000000 00000110	0000 0000 0000 0110				
7	0007	0000000 00000111	0000 0000 0000 0111				
8	0008	0000000 00001000	0000 0000 0000 1000				
9	0009	0000000 00001001	0000 0000 0000 1001				
10	000A	0000000 00001010	0000 0000 0001 0000				
11	000B	0000000 00001011	0000 0000 0001 0001				
12	000C	0000000 00001100	0000 0000 0001 0010				
13	000D	0000000 00001101	0000 0000 0001 0011				
14	000E	0000000 00001110	0000 0000 0001 0100				
15	000F	0000000 00001111	0000 0000 0001 0101				
16	0010	0000000 00010000	0000 0000 0001 0110				
17	0011	0000000 00010001	0000 0000 0001 0111				
18	0012	0000000 00010010	0000 0000 0001 1000				
19	0013	0000000 00010011	0000 0000 0001 1001				
20	0014	0000000 00010100	0000 0000 0010 0000				
21	0015	0000000 00010101	0000 0000 0010 0001				
22	0016	0000000 00010110	0000 0000 0010 0010				
23	0017	0000000 00010111	0000 0000 0010 0011				
24	0018	0000000 00011000	0000 0000 0010 0100				
25	0019	0000000 00011001	0000 0000 0010 0101				
26	001A	0000000 00011010	0000 0000 0010 0110				
27	001B	0000000 00011011	0000 0000 0010 0111				
28	001C	0000000 00011100	0000 0000 0010 1000				
29	001D	0000000 00011101	0000 0000 0010 1001				
30	001E	0000000 00011110	0000 0000 0011 0000				
31	001F	0000000 00011111	0000 0000 0011 0001				
	•		-				
63	003F	0000000 00111111	0000 0000 0110 0011				
· ·	•	•	•				
	•	•	•				
	•						
255	00FF	00000000 11111111	0000 0010 0101 0101				
	•						
•	•						
	•		•				
9999	270F	00100111 00001111	1001 1001 1001 1001				

14-70

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

14.7 ASCII Codes

				-	b7								
				•	b6	0	0	0	0	1	1	1	1
				•	b5	0	0	1	1	0	0	1	1
				•	b4	0	1	0	1	0	1	0	1
b7 b6 b5 b4	b3	b2	b1	b0	C/ R	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DEL	SPACE	0	@	Ρ	×	р
	0	0	0	1	1	SOH	DC1	1	1	А	Q	а	q
	0	0	1	0	2	STX	DC2	ш	2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	с	s
	0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	1	0	1	5	ENQ	NAK	%	5	Е	U	е	u
	0	1	1	0	6	ACK	SYN	&	6	F	V	f	v
	0	1	1	1	7	BEL	ETB	I.	7	G	W	g	W
	1	0	0	0	8	BS	CAN	(8	Н	Х	h	х
	1	0	0	1	9	HT	EM)	9	T.	Y	i	у
	1	0	1	0	А	LF	SUB	*	1	J	Z	j	z
	1	0	1	1	В	VT	ESC	+	;	К]	k	{
	1	1	0	0	С	FF	FS	,	<	L	¥	Ι	I
	1	1	0	1	D	CR	GS	-	=	М]	m	}
	1	1	1	0	Е	SO	RS		>	Ν	۸	n	~
	1	1	1	1	F	SI	US	1	?	0	_	0	DEL

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Record of changes

Manual No.	Date	Description of changes
ACG-M0084-1	JAN.1997	First edition
ACG-M0084-2	JUL.1997	 2nd edition Size change (from A5 to B5) Newly addition of FP0 transistor output type information
ACG-M0084-3	JUN.1998	 3rd edition Descriptions for FP0 control units with RS232C port are added. Descriptions for FP0 input only and output only type expansion units are added. Descriptions for FP0 analog I/O unit is added.
ARCT1F389E	FEB.2004	4th edition - Addition Programming Manual Chapter 4 (ACG-M0084-3) Chapter 5 Chapter 6 Chapter 8 S-LINK Control unit ARCT1F263E - Delete Chapter 8 Connecting the I.O.P. Display Panel Chapter 9 Trial Operation
ARCT1F389E-1	FEB.2006	5th edition
ARCT1F389E-2	JUN.2007	6th edition
ARCT1F389E-3	FEB.2009	7th edition - Change in Corporate name
ARCT1F389E-4	JUN.2010	8th edition
ARCT1F389E-5	AUG.2011	9th edition - Change in Corporate name - Fixed Errors